Naomi Gendler, Oliver Janssen, Matthew Kleban, Joan La Madrid, Viraf M. Mehta
{"title":"Axion minima in string theory","authors":"Naomi Gendler, Oliver Janssen, Matthew Kleban, Joan La Madrid, Viraf M. Mehta","doi":"10.1007/JHEP02(2025)134","DOIUrl":null,"url":null,"abstract":"<p>We study the landscape of axion theories in compactifications of type IIB string theory on orientifolds of Calabi-Yau threefolds. In a sample of approximately 400,000 geometries we find that in the regime of perturbative control there are only a handful of distinct axion minima per geometry, despite there being infinitely many instanton contributions to the potential with unbounded charges. The ensemble we consider has numbers of axion fields ranging from 1 to 491, but the median number of distinct minima is 1, the mean number is 1.9 and the largest is 54. These small numbers of minima occur because the leading axion charge matrix is quite sparse, while the subleading corrections are increasingly exponentially suppressed as the charges increase. On their own, such potentials are nowhere near rich enough to be of interest anthropically. This is in stark contrast to potentials for which the charge matrix is less sparse or the hierarchies between the instanton contributions are less steep, where one can find <span>\\( \\mathcal{O}\\left({10}^{500}\\right) \\)</span> minima for <span>\\( \\mathcal{O}(500) \\)</span> axions. To generate a sufficiently large landscape from string compactifications our results indicate that one would need to rely on varying flux or topology, or to develop tools that allow one to go beyond the regime we can control with current techniques.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)134.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)134","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the landscape of axion theories in compactifications of type IIB string theory on orientifolds of Calabi-Yau threefolds. In a sample of approximately 400,000 geometries we find that in the regime of perturbative control there are only a handful of distinct axion minima per geometry, despite there being infinitely many instanton contributions to the potential with unbounded charges. The ensemble we consider has numbers of axion fields ranging from 1 to 491, but the median number of distinct minima is 1, the mean number is 1.9 and the largest is 54. These small numbers of minima occur because the leading axion charge matrix is quite sparse, while the subleading corrections are increasingly exponentially suppressed as the charges increase. On their own, such potentials are nowhere near rich enough to be of interest anthropically. This is in stark contrast to potentials for which the charge matrix is less sparse or the hierarchies between the instanton contributions are less steep, where one can find \( \mathcal{O}\left({10}^{500}\right) \) minima for \( \mathcal{O}(500) \) axions. To generate a sufficiently large landscape from string compactifications our results indicate that one would need to rely on varying flux or topology, or to develop tools that allow one to go beyond the regime we can control with current techniques.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).