{"title":"Cold Spray of Ni-Based Superalloys: A Review on Processing and Residual Stress","authors":"Parcelino Sudigdo, Venkata Satish Bhattiprolu, Tanvir Hussain","doi":"10.1007/s11666-024-01916-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cold spray has been extensively applied to deposit a range of materials in many industries. In the recent times, such a method has also shown its potential to deposit nickel-based superalloys, which currently are in demand due to their high tensile strength and corrosion resistance (especially at elevated temperatures); however, cold sprayed nickel super alloy coatings have poor mechanical properties due to the materials’ limited ability to undergo plastic deformation. Regarding this, numerous cold spray process modifications have been experimented, including preheating substrate and feedstock powder, applying laser irradiation, heat treating coatings post deposition, and heat treating feedstock powder, to promote plastic deformation, eliminate porosity and enhance inter particle bonding. Specifically, the important influence of external heat input on the underlying substrate and/or the incoming particles during cold spray deposition was highlighted in multiple studies. These studies indicated that the addition of external heat during cold spray increased the adhesion strength of the coatings due to an increase in the thermal softening effect of the deposited particles. In general, an attempt is made here to systematically review the influence of cold spray process modifications on the microstructure, mechanical properties and residual stresses of nickel super alloy coatings.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 1","pages":"37 - 74"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01916-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01916-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cold spray has been extensively applied to deposit a range of materials in many industries. In the recent times, such a method has also shown its potential to deposit nickel-based superalloys, which currently are in demand due to their high tensile strength and corrosion resistance (especially at elevated temperatures); however, cold sprayed nickel super alloy coatings have poor mechanical properties due to the materials’ limited ability to undergo plastic deformation. Regarding this, numerous cold spray process modifications have been experimented, including preheating substrate and feedstock powder, applying laser irradiation, heat treating coatings post deposition, and heat treating feedstock powder, to promote plastic deformation, eliminate porosity and enhance inter particle bonding. Specifically, the important influence of external heat input on the underlying substrate and/or the incoming particles during cold spray deposition was highlighted in multiple studies. These studies indicated that the addition of external heat during cold spray increased the adhesion strength of the coatings due to an increase in the thermal softening effect of the deposited particles. In general, an attempt is made here to systematically review the influence of cold spray process modifications on the microstructure, mechanical properties and residual stresses of nickel super alloy coatings.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.