Akshay R. Govande, Subrat Kumar Baral, Ravikumar Dumpala, Shrikant Joshi
{"title":"Wear Characteristics of Thermally Sprayed Diamond-Reinforced Ni-P Coatings","authors":"Akshay R. Govande, Subrat Kumar Baral, Ravikumar Dumpala, Shrikant Joshi","doi":"10.1007/s11666-025-01927-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this experimental study, diamond-reinforced Ni-P coatings were developed by flame and high-velocity air fuel (HVAF) spraying techniques using Ni-P capped diamond powder. Further, effect of heat-treatment on microstructure, structural, hardness and high temperature wear characteristics of the above coatings was investigated. After heat-treatment, high hardness was observed in HVAF coating compared to flame sprayed which is attributed to the high porosity of the latter as evident from the microstructure. Extensive diamond particle fragmentation was observed in the HVAF sprayed coating, providing motivation for including the lower velocity flame spraying in this work. It is interesting to note from the wear tests that coatings deposited by flame spraying exhibited superior wear resistance and low friction coefficient at high temperature, i.e., under dominated oxidative wear conditions, which is attributed to the soft matrix leading to diamond particles’ exposure and graphitization. However, hard and dense heat-treated HVAF sprayed coatings exhibited highest wear resistance in room temperature tests dominated by abrasive wear mechanism as evident from the wear track morphology. Raman spectroscopy and energy dispersive spectroscopy analysis (EDS) confirmed the graphitization for the flame sprayed coatings and formation of oxides in the wear tracks.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 1","pages":"432 - 443"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-01927-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this experimental study, diamond-reinforced Ni-P coatings were developed by flame and high-velocity air fuel (HVAF) spraying techniques using Ni-P capped diamond powder. Further, effect of heat-treatment on microstructure, structural, hardness and high temperature wear characteristics of the above coatings was investigated. After heat-treatment, high hardness was observed in HVAF coating compared to flame sprayed which is attributed to the high porosity of the latter as evident from the microstructure. Extensive diamond particle fragmentation was observed in the HVAF sprayed coating, providing motivation for including the lower velocity flame spraying in this work. It is interesting to note from the wear tests that coatings deposited by flame spraying exhibited superior wear resistance and low friction coefficient at high temperature, i.e., under dominated oxidative wear conditions, which is attributed to the soft matrix leading to diamond particles’ exposure and graphitization. However, hard and dense heat-treated HVAF sprayed coatings exhibited highest wear resistance in room temperature tests dominated by abrasive wear mechanism as evident from the wear track morphology. Raman spectroscopy and energy dispersive spectroscopy analysis (EDS) confirmed the graphitization for the flame sprayed coatings and formation of oxides in the wear tracks.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.