Guo Yu, Song Chen, Liu Min, Wen Kui, Liu Taikai, Zhu Liangzhu, Mao Jie, Zhang Xiaofeng, Deng Chunming, Deng Changguang, Liao Hanlin
{"title":"Development of NiO-GDC Anode by Atmospheric Plasma Spraying for Metal-Supported SOFCs","authors":"Guo Yu, Song Chen, Liu Min, Wen Kui, Liu Taikai, Zhu Liangzhu, Mao Jie, Zhang Xiaofeng, Deng Chunming, Deng Changguang, Liao Hanlin","doi":"10.1007/s11666-024-01861-w","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric plasma spraying (APS) is an attractive method for metal-supported solid oxide fuel cells (MS-SOFCs). In this study, NiO-Gd<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>1.9</sub> anodes are fabricated by APS. Different spraying distances of 80-120 mm are adopted to investigate the effect on the microstructures and properties of anode coatings. The temperature, velocity and deposition morphology of the anode particles indicate that at a suitable spray distance of 100 mm, the anode particles are fully melted and accelerated under the plasma jet to form an optimal anode coating on the substrate. As a result, the full cell based on the 100-mm anode coating shows a maximum output power density of 940.45 mW/cm<sup>2</sup> and an open-circuit voltage of 1 V at 800 °C. The polarization resistance of the cell is 0.234 Ω·cm<sup>2</sup>. It demonstrates that controlling the APS spraying distance can effectively adjust the anode deposition state and obtain high-performance MS-SOFCs.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 1","pages":"291 - 299"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01861-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric plasma spraying (APS) is an attractive method for metal-supported solid oxide fuel cells (MS-SOFCs). In this study, NiO-Gd0.2Ce0.8O1.9 anodes are fabricated by APS. Different spraying distances of 80-120 mm are adopted to investigate the effect on the microstructures and properties of anode coatings. The temperature, velocity and deposition morphology of the anode particles indicate that at a suitable spray distance of 100 mm, the anode particles are fully melted and accelerated under the plasma jet to form an optimal anode coating on the substrate. As a result, the full cell based on the 100-mm anode coating shows a maximum output power density of 940.45 mW/cm2 and an open-circuit voltage of 1 V at 800 °C. The polarization resistance of the cell is 0.234 Ω·cm2. It demonstrates that controlling the APS spraying distance can effectively adjust the anode deposition state and obtain high-performance MS-SOFCs.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.