Semantic sensor data integration for talent development via hybrid multi-objective evolutionary algorithm

IF 0.5 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2024-07-28 DOI:10.1002/itl2.557
Fang Luo, Ya-Juan Yang, Yu-Cheng Geng
{"title":"Semantic sensor data integration for talent development via hybrid multi-objective evolutionary algorithm","authors":"Fang Luo,&nbsp;Ya-Juan Yang,&nbsp;Yu-Cheng Geng","doi":"10.1002/itl2.557","DOIUrl":null,"url":null,"abstract":"<p>In this work, we propose a new hybrid Multi-Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi-Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi-objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real-world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting-edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/itl2.557","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a new hybrid Multi-Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi-Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi-objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real-world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting-edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过混合多目标进化算法整合语义传感器数据,促进人才培养
在这项工作中,我们提出了一种新的混合多目标进化算法(hMOEA),专门为语义传感器数据集成设计,针对语义物联网(SIoT)新兴领域的人才培养。我们的方法协同了多目标粒子群优化和遗传算法的能力,以解决传感器本体匹配(SOM)中固有的复杂挑战。这种创新的hMOEA框架适用于识别不同本体之间的精确语义相关性,从而促进无缝互操作性并增强物联网应用的功能。我们的核心贡献是开发了支持SOM过程的先进多目标优化模型,实现了hMOEA框架,为准确的语义传感器数据集成设定了新的基准,并通过在各种实际SOM场景中的广泛测试严格验证了hMOEA的优势。这项研究不仅标志着SOM的重大进步,而且突出了前沿的SOM方法在教育课程中的关键作用,例如,近年来中国提出的新的商业学科教育,旨在为未来的专业人员提供必要的技能,以在SIoT和SW领域进行创新和领导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Medical Security Based Whale Optimization Algorithm (EMSWOA) in Wireless Body Area Networks IIoT-Driven Digital Cockpits Carbon Neutral Assimilation System: Exploratory and Exploitative Green Innovation Enhance Reliability and Security in VANET Using Clustering Based on ANT Colony Optimization and Fuzzy Logic Research on Online Monitoring System of Generator Slip Ring Temperature Based on the Internet of Things and Edge Computing Lightweight Neural Networks on Edge Devices for Real-Time Analysis of Student Movement in Cloud-Assisted Physical Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1