An Electrochemical/Thermodynamic Analytical Model for Hard-Pack Lithium-Ion Batteries in Engineering Education

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2025-02-20 DOI:10.1002/eng2.70024
Ligang Wang, Hangyang Li, Zhiliang Huang, Peng Wu, Jiayuan Huangfu
{"title":"An Electrochemical/Thermodynamic Analytical Model for Hard-Pack Lithium-Ion Batteries in Engineering Education","authors":"Ligang Wang,&nbsp;Hangyang Li,&nbsp;Zhiliang Huang,&nbsp;Peng Wu,&nbsp;Jiayuan Huangfu","doi":"10.1002/eng2.70024","DOIUrl":null,"url":null,"abstract":"<p>Modeling lithium-ion battery states plays a crucial role in supporting engineering education, yet applying existing models in the classroom poses challenges. This paper presents an electrochemical/thermodynamic analytical model with 19 parameters for hard-pack lithium-ion batteries, providing efficient and compact MATLAB code as an instructional tool for engineering education. The paper elucidates the mechanisms of electrochemical/thermodynamic behavior evolution in lithium-ion batteries under thermal abuse and develops a state evaluation model based on ordinary differential equations. The highly nonlinear dynamic problem is discretized into a series of static problems, which are solved using the Levenberg–Marquardt algorithm. The MATLAB program is applied to prismatic and cylindrical lithium-ion batteries, yielding critical venting points and state evolution curves, such as temperature, pressure, gas production, heat generation rate, and reaction rate. The comprehensive results vividly demonstrate the evolution of electrochemical and thermodynamic behavior in lithium-ion batteries, aiding students in grasping complex concepts within the course. The modeling and solution process, along with the discussion of algorithm parameters, are expected to enhance students' programming skills and engineering thinking. The proposed algorithm demonstrates second-level efficiency and good convergence, highlighting its potential for classroom applications.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling lithium-ion battery states plays a crucial role in supporting engineering education, yet applying existing models in the classroom poses challenges. This paper presents an electrochemical/thermodynamic analytical model with 19 parameters for hard-pack lithium-ion batteries, providing efficient and compact MATLAB code as an instructional tool for engineering education. The paper elucidates the mechanisms of electrochemical/thermodynamic behavior evolution in lithium-ion batteries under thermal abuse and develops a state evaluation model based on ordinary differential equations. The highly nonlinear dynamic problem is discretized into a series of static problems, which are solved using the Levenberg–Marquardt algorithm. The MATLAB program is applied to prismatic and cylindrical lithium-ion batteries, yielding critical venting points and state evolution curves, such as temperature, pressure, gas production, heat generation rate, and reaction rate. The comprehensive results vividly demonstrate the evolution of electrochemical and thermodynamic behavior in lithium-ion batteries, aiding students in grasping complex concepts within the course. The modeling and solution process, along with the discussion of algorithm parameters, are expected to enhance students' programming skills and engineering thinking. The proposed algorithm demonstrates second-level efficiency and good convergence, highlighting its potential for classroom applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Evaluation of Mechanical Properties, Color Stability, and Cleaning Efficacy of BioMed Clear Resin-Based Dental Aligners A Semi-Analytic Hybrid Approach for Solving the Buckmaster Equation: Application of the Elzaki Projected Differential Transform Method (EPDTM) Harnessing Free Space Optics for Efficient 6G Fronthaul Networks: Challenges and Opportunities Deep Learning Based Visual Servo for Autonomous Aircraft Refueling Origin of the Paleocene Granite in the Lhasa Terrane of the Qinghai-Tibet Plateau and Its Constraints on the Evolution of the Neo-Tethys Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1