Targeting USP1 Potentiates Radiation-Induced Type I IFN-Dependent Antitumor Immunity by Enhancing Oligo-Ubiquitinated SAR1A-Mediated STING Trafficking and Activation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-02-20 DOI:10.1002/advs.202412687
Weilin Zhou, Yuxuan Zhao, Wenjing Qin, Weijian Wu, Chenyang Liao, Yiqiu Zhang, Xingli Yang, Xue Chen, Youqiao Wang, Yushan Kang, Jiaxin Wu, Jiaojiao Zhao, Junmin Quan, Xuecen Wang, Xianzhang Bu, Xin Yue
{"title":"Targeting USP1 Potentiates Radiation-Induced Type I IFN-Dependent Antitumor Immunity by Enhancing Oligo-Ubiquitinated SAR1A-Mediated STING Trafficking and Activation.","authors":"Weilin Zhou, Yuxuan Zhao, Wenjing Qin, Weijian Wu, Chenyang Liao, Yiqiu Zhang, Xingli Yang, Xue Chen, Youqiao Wang, Yushan Kang, Jiaxin Wu, Jiaojiao Zhao, Junmin Quan, Xuecen Wang, Xianzhang Bu, Xin Yue","doi":"10.1002/advs.202412687","DOIUrl":null,"url":null,"abstract":"<p><p>The magnitude of Type I interferon (IFN) mediated innate immune response within the tumor microenvironment (TME) critically influences the effectiveness of radiotherapy. Unfortunately, due to a myriad of resistance mechanisms, the double-stranded DNA (dsDNA) signals produced by tumor cells postradiotherapy often induce a diminished response from immune cells. Through chemical screening targeting deubiquitinating enzymes, we identified USP1 (Ubiquitin Specific Peptidase 1) inhibitor as an enhancer of post-radiotherapy dsDNA responses. Mechanistically, within the context of immune-stimulatory cells in TME, USP1 serves as a suppressor in the stress-mediated stages of the cGAS (Cyclic GMP-AMP synthase) -STING (Stimulator of interferon genes protein) signaling pathway, specifically affecting the trafficking of STING from endoplasmic reticulum to Golgi apparatus. It is elucidated that SAR1A (Secretion associated Ras related GTPase 1A) requires K27-linked oligo-ubiquitination to assemble the STING-COP-II (Coat protein II) transport complex for STING trafficking. USP1 counteracts this activation by removing SAR1A ubiquitination, thereby blocking STING trafficking and activation. Consequently, pharmacological USP1 inhibition using ML323 sustains SAR1A ubiquitination and COP-II complex formation, significantly enhancing STING trafficking and subsequent Type I IFN production. This intervention substantially amplifies radiotherapy-induced immune activation in the TME, providing a strategic approach to overcome therapeutic resistance and synergize radiotherapy with immunotherapies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412687"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412687","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magnitude of Type I interferon (IFN) mediated innate immune response within the tumor microenvironment (TME) critically influences the effectiveness of radiotherapy. Unfortunately, due to a myriad of resistance mechanisms, the double-stranded DNA (dsDNA) signals produced by tumor cells postradiotherapy often induce a diminished response from immune cells. Through chemical screening targeting deubiquitinating enzymes, we identified USP1 (Ubiquitin Specific Peptidase 1) inhibitor as an enhancer of post-radiotherapy dsDNA responses. Mechanistically, within the context of immune-stimulatory cells in TME, USP1 serves as a suppressor in the stress-mediated stages of the cGAS (Cyclic GMP-AMP synthase) -STING (Stimulator of interferon genes protein) signaling pathway, specifically affecting the trafficking of STING from endoplasmic reticulum to Golgi apparatus. It is elucidated that SAR1A (Secretion associated Ras related GTPase 1A) requires K27-linked oligo-ubiquitination to assemble the STING-COP-II (Coat protein II) transport complex for STING trafficking. USP1 counteracts this activation by removing SAR1A ubiquitination, thereby blocking STING trafficking and activation. Consequently, pharmacological USP1 inhibition using ML323 sustains SAR1A ubiquitination and COP-II complex formation, significantly enhancing STING trafficking and subsequent Type I IFN production. This intervention substantially amplifies radiotherapy-induced immune activation in the TME, providing a strategic approach to overcome therapeutic resistance and synergize radiotherapy with immunotherapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Targeting USP1 Potentiates Radiation-Induced Type I IFN-Dependent Antitumor Immunity by Enhancing Oligo-Ubiquitinated SAR1A-Mediated STING Trafficking and Activation. T-Cell-Dependent Bispecific IgGs Protect Aged Mice From Lethal SARS-CoV-2 Infection. Tunable Hierarchically Porous Gadolinium-Based Metal-Organic Frameworks for Bacteria-Targeting Magnetic Resonance Imaging and In Situ Anti-Bacterial Therapy. Ultrabroadband Directional Tunable Thermal Emission Control Based on Vanadium Dioxide Photonic Structures. Ultrafast All-Optical Switching and Active Sub-Cycle Waveform Control via Time-Variant Photodoping of Terahertz Metasurfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1