Lara Marie Novak, Elisabeth Hengge, Eva-Maria Steyskal, Roland Würschum, Bernd Nidetzky
{"title":"Interplay of Surface Charge and Pore Characteristics in the Immobilization of Lactate Oxidase on Bulk Nanoporous Gold Electrodes.","authors":"Lara Marie Novak, Elisabeth Hengge, Eva-Maria Steyskal, Roland Würschum, Bernd Nidetzky","doi":"10.1021/acs.langmuir.4c04367","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilization of enzymes on (nano)porous metal carriers provides the foundation for an advanced design of bioelectrodes suitable for catalysis and sensing. However, interactions upon adsorption are still poorly understood, and so the efficient coupling of the enzymes to the electrode surface remains one of the major challenges. Here, we present a comprehensive study of the immobilization behavior of <i>Aerococcus viridans</i> l-lactate oxidase (LOx) on nanoporous gold (npAu) in dependence of electrode modification with differently charged self-assembled monolayers (SAMs). The highest activity (up to 14 U/g) and electrocatalytic response (sensitivity of 3.9 μA mM<sup>-1</sup>) were observed for a sulfonate-terminated SAM. This is contrary to enzyme behavior on conventional polymer carriers, and thus, the effect is specific to the metal electrodes. We propose the capture of the negatively charged LOx in a dense counterion layer in close proximity to the strongly negatively charged gold surface. Adsorption on positively charged amine-terminated SAMs resulted in a similar immobilization yield but gave much lower activity (4-fold). Importantly, the effect of the sulfonate SAM was strongly dependent on the npAu electrode pore size: the highest LOx activity (in U/cm<sup>2</sup>) was found with pores (diameter of ∼170 nm) supposedly large enough to facilitate enzyme diffusion into the porous structure during immobilization. Electrochemical sensing of H<sub>2</sub>O<sub>2</sub> produced by the LOx reaction showed a 2.5-fold higher sensitivity for l-lactate on the negatively charged surface. Lixiviation studies supported the proposed layer capture and revealed a faster decline in the electrode activity with sulfonate surface modification. Collectively, the present study reveals enhanced activity of LOx on sulfonate-charged gold surfaces and a strong pore size dependence. These findings deepen the understanding of the immobilization behavior of LOx on charged nanoporous metals and have importance for the advanced design of enzyme electrodes.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04367","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immobilization of enzymes on (nano)porous metal carriers provides the foundation for an advanced design of bioelectrodes suitable for catalysis and sensing. However, interactions upon adsorption are still poorly understood, and so the efficient coupling of the enzymes to the electrode surface remains one of the major challenges. Here, we present a comprehensive study of the immobilization behavior of Aerococcus viridans l-lactate oxidase (LOx) on nanoporous gold (npAu) in dependence of electrode modification with differently charged self-assembled monolayers (SAMs). The highest activity (up to 14 U/g) and electrocatalytic response (sensitivity of 3.9 μA mM-1) were observed for a sulfonate-terminated SAM. This is contrary to enzyme behavior on conventional polymer carriers, and thus, the effect is specific to the metal electrodes. We propose the capture of the negatively charged LOx in a dense counterion layer in close proximity to the strongly negatively charged gold surface. Adsorption on positively charged amine-terminated SAMs resulted in a similar immobilization yield but gave much lower activity (4-fold). Importantly, the effect of the sulfonate SAM was strongly dependent on the npAu electrode pore size: the highest LOx activity (in U/cm2) was found with pores (diameter of ∼170 nm) supposedly large enough to facilitate enzyme diffusion into the porous structure during immobilization. Electrochemical sensing of H2O2 produced by the LOx reaction showed a 2.5-fold higher sensitivity for l-lactate on the negatively charged surface. Lixiviation studies supported the proposed layer capture and revealed a faster decline in the electrode activity with sulfonate surface modification. Collectively, the present study reveals enhanced activity of LOx on sulfonate-charged gold surfaces and a strong pore size dependence. These findings deepen the understanding of the immobilization behavior of LOx on charged nanoporous metals and have importance for the advanced design of enzyme electrodes.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).