Dynamics of soil carbon stock in response to land use conversion in European woodland and shrubland in the last decade.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI:10.1016/j.jenvman.2025.124513
Baig Abdullah Al Shoumik, Abdelrahman Tiema, Wudu Abiye, Prabesh Rai, Karun Adhikari, Hassan Esmaeili-Gisavandani, Md Zulfikar Khan, Coşkun Gülser
{"title":"Dynamics of soil carbon stock in response to land use conversion in European woodland and shrubland in the last decade.","authors":"Baig Abdullah Al Shoumik, Abdelrahman Tiema, Wudu Abiye, Prabesh Rai, Karun Adhikari, Hassan Esmaeili-Gisavandani, Md Zulfikar Khan, Coşkun Gülser","doi":"10.1016/j.jenvman.2025.124513","DOIUrl":null,"url":null,"abstract":"<p><p>Soil carbon sequestration and its monitoring is important to improve climate resilience and mitigate global warming. According to the European Environment Agency (EEA), soils in Europe are losing carbon that could hamper achieving the EU climate targets. Hence, it is necessary to explore the dynamics of soil organic carbon (SOC) storage in different ecosystems so that the EU policymakers can observe the progress towards achieving EU Green Deal objectives. The aim of this research was to quantify the ΔSOC-S in woodland and shrubland in the last decade (2009-2018) and to study the ΔSOC-S due to the land use conversion. In this regard, revisited sampling points between 2009 and 2018 from the topsoil (0-20 cm) of woodland and shrubland of the EU + UK soil database named Land Use/Land Cover Area Frame Survey (LUCAS) was used. The analysis revealed that broadleaved-woodland to coniferous- or mixed-woodland conversion in 2018, and shrubland to woodland conversion in 2015 increased SOC-S. Overall, we found a net accumulation of SOC-S in woodland (2184.08 ton ha<sup>-1</sup>) and shrubland (302.78 ton ha<sup>-1</sup>) soil with 7.78% increment in woodland and 12.56% in shrubland between 2009/12 and 2018. Also, in central Europe, mean annual temperature (MAT) increased and precipitation (MAP) decreased between the study periods. The relationship between precipitation and temperature showed that precipitation and SOC-S in woodland had no relationship, but with the rising temperature, SOC-S in both land types significantly decreased revealing warming can significantly affect SOC-S.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124513"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124513","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil carbon sequestration and its monitoring is important to improve climate resilience and mitigate global warming. According to the European Environment Agency (EEA), soils in Europe are losing carbon that could hamper achieving the EU climate targets. Hence, it is necessary to explore the dynamics of soil organic carbon (SOC) storage in different ecosystems so that the EU policymakers can observe the progress towards achieving EU Green Deal objectives. The aim of this research was to quantify the ΔSOC-S in woodland and shrubland in the last decade (2009-2018) and to study the ΔSOC-S due to the land use conversion. In this regard, revisited sampling points between 2009 and 2018 from the topsoil (0-20 cm) of woodland and shrubland of the EU + UK soil database named Land Use/Land Cover Area Frame Survey (LUCAS) was used. The analysis revealed that broadleaved-woodland to coniferous- or mixed-woodland conversion in 2018, and shrubland to woodland conversion in 2015 increased SOC-S. Overall, we found a net accumulation of SOC-S in woodland (2184.08 ton ha-1) and shrubland (302.78 ton ha-1) soil with 7.78% increment in woodland and 12.56% in shrubland between 2009/12 and 2018. Also, in central Europe, mean annual temperature (MAT) increased and precipitation (MAP) decreased between the study periods. The relationship between precipitation and temperature showed that precipitation and SOC-S in woodland had no relationship, but with the rising temperature, SOC-S in both land types significantly decreased revealing warming can significantly affect SOC-S.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Seaweed feed enhance the long-term recovery of bacterial community and carbon-nitrogen sequestration in eutrophic coastal wetland Microbial Fe(III) reduction across a pH gradient: The impacts on secondary mineralization and microbial community development Enhancing textile wastewater reuse: Integrating Fenton oxidation with membrane filtration The impact of noise on green open space value Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1