Asha Budakoti, Priyankar Jha, Meenakshi Verma, Prema G Vasudev, Atul Gupta
{"title":"Imidazole-catalyzed construction of bridged bicyclo [3.3.1] ketals <i>via</i> formal [3 + 3]-cycloaddition of naphthols and 2-hydroxyl chromene derivatives.","authors":"Asha Budakoti, Priyankar Jha, Meenakshi Verma, Prema G Vasudev, Atul Gupta","doi":"10.1039/d4ob02068e","DOIUrl":null,"url":null,"abstract":"<p><p>Bridged bicyclo[3.3.1]nonanes having the <i>O</i>,<i>O</i>-ketal subunit are widely found in medicinal compounds. While several acid-catalyzed approaches have been reported for the construction of ketals, this study discloses an imidazole-catalyzed modular construction of bicyclo[3.3.1]nonanes from naphthols/phenols and 3-acyl-2-hydroxyl chromenes. The proposed reaction pathway follows a formal [3 + 3] cycloaddition of phenols and an oxonium dipolar intermediate. The reaction is efficient regarding scalability, environmentally benign conditions, and resulting in the products in good to excellent yields.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob02068e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Bridged bicyclo[3.3.1]nonanes having the O,O-ketal subunit are widely found in medicinal compounds. While several acid-catalyzed approaches have been reported for the construction of ketals, this study discloses an imidazole-catalyzed modular construction of bicyclo[3.3.1]nonanes from naphthols/phenols and 3-acyl-2-hydroxyl chromenes. The proposed reaction pathway follows a formal [3 + 3] cycloaddition of phenols and an oxonium dipolar intermediate. The reaction is efficient regarding scalability, environmentally benign conditions, and resulting in the products in good to excellent yields.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.