Antibody-level Bacteria Grabbing by “Mechanic Invasion” of Bioinspired Hedgehog Artificial Mesoporous Nanostructure for Hierarchical Dynamic Identification and Light-Response Sterilization

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-19 DOI:10.1002/adma.202416906
Sijie Liu, Rui Shu, Huilin Jia, Kexin Wang, Biao Wang, Jiayi Zhang, Jing Sun, Nosirjon Sattorov, Kamoljon Burkhonovich Makhmudov, Maojun Jin, Jianlong Wang
{"title":"Antibody-level Bacteria Grabbing by “Mechanic Invasion” of Bioinspired Hedgehog Artificial Mesoporous Nanostructure for Hierarchical Dynamic Identification and Light-Response Sterilization","authors":"Sijie Liu,&nbsp;Rui Shu,&nbsp;Huilin Jia,&nbsp;Kexin Wang,&nbsp;Biao Wang,&nbsp;Jiayi Zhang,&nbsp;Jing Sun,&nbsp;Nosirjon Sattorov,&nbsp;Kamoljon Burkhonovich Makhmudov,&nbsp;Maojun Jin,&nbsp;Jianlong Wang","doi":"10.1002/adma.202416906","DOIUrl":null,"url":null,"abstract":"<p>The interactions exploration between microorganisms and nanostructures are pivotal steps toward advanced applications, but the antibody-level bacteria grabbing is limited by the poor understanding of interface identification mechanisms in small-sized systems. Herein, the de novo design of a bioinspired hedgehog artificial mesoporous nanostructure (core–shell mesoporous Au@Pt (mAPt)) are proposed to investigate the association between the topography design and efficient bacteria grabbing. These observations indicate that virus-like spiky topography compensates for the obstacles faced by small-sized materials for bacteria grabbing, including the lack of requisite microscopic cavities and sufficient contact area. Molecular dynamics simulation reveals that spiky topography with heightened mechano-invasiveness (6.56 × 10<sup>3</sup> KJ mol<sup>−1</sup>) facilitates antibody-level bacteria grabbing, attributed to the “mechanic invasion”-induced hierarchical dynamic identification ranging from rough surface contact to penetration fixation. Furthermore, light reflectance and finite element calculation confirmed that mAPt exhibits near-superblack characteristic and plasmonic hot spot, facilitating enhanced photothermal conversion with power dissipation density at 2.04 × 10<sup>21</sup> W m<sup>−3</sup>. After integrating the hierarchical dynamic identification with enhanced light response, mAPt enables advanced applications in immunoassay with 50-fold sensitivity enhancement and over 99.99% in vitro photothermal sterilization. It is anticipated that this novel biomimetic design provides a deeper understanding of bacteria grabbing and a promising paradigm for bacteria combating.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 15","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202416906","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interactions exploration between microorganisms and nanostructures are pivotal steps toward advanced applications, but the antibody-level bacteria grabbing is limited by the poor understanding of interface identification mechanisms in small-sized systems. Herein, the de novo design of a bioinspired hedgehog artificial mesoporous nanostructure (core–shell mesoporous Au@Pt (mAPt)) are proposed to investigate the association between the topography design and efficient bacteria grabbing. These observations indicate that virus-like spiky topography compensates for the obstacles faced by small-sized materials for bacteria grabbing, including the lack of requisite microscopic cavities and sufficient contact area. Molecular dynamics simulation reveals that spiky topography with heightened mechano-invasiveness (6.56 × 103 KJ mol−1) facilitates antibody-level bacteria grabbing, attributed to the “mechanic invasion”-induced hierarchical dynamic identification ranging from rough surface contact to penetration fixation. Furthermore, light reflectance and finite element calculation confirmed that mAPt exhibits near-superblack characteristic and plasmonic hot spot, facilitating enhanced photothermal conversion with power dissipation density at 2.04 × 1021 W m−3. After integrating the hierarchical dynamic identification with enhanced light response, mAPt enables advanced applications in immunoassay with 50-fold sensitivity enhancement and over 99.99% in vitro photothermal sterilization. It is anticipated that this novel biomimetic design provides a deeper understanding of bacteria grabbing and a promising paradigm for bacteria combating.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿生刺猬人工介孔纳米结构的“机械入侵”抗体水平抓菌分层动态识别和光响应灭菌。
微生物与纳米结构之间的相互作用探索是迈向先进应用的关键步骤,但由于对小型系统中界面识别机制的理解不足,抗体水平的细菌捕获受到限制。本文提出了一种仿生刺猬人工介孔纳米结构(核壳介孔Au@Pt (mAPt))的从头设计,以研究地形设计与高效细菌捕获之间的关系。这些观察结果表明,类似病毒的尖状地形弥补了小尺寸材料对细菌捕获所面临的障碍,包括缺乏必要的微观腔和足够的接触面积。分子动力学模拟表明,具有较高机械侵入性(6.56 × 103 KJ mol-1)的尖状地形有利于抗体水平的细菌捕获,这归因于“机械入侵”诱导的分层动态识别,从粗糙的表面接触到穿透固定。此外,光反射率和有限元计算证实了mAPt具有近超黑特性和等离子体热点,有利于增强光热转换,功耗密度为2.04 × 1021 W m-3。mAPt将分层动态识别与增强的光响应相结合,在免疫分析中具有50倍的灵敏度增强和超过99.99%的体外光热灭菌的先进应用。预计这种新颖的仿生设计将为细菌捕获提供更深入的理解,并为细菌对抗提供一个有前途的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Tailoring Nano-Metal-Organic Frameworks and Their Derivatives: From Morphology Engineering to Structural and Functional Optimization. Magnetic Mesoporous Nanoparticles Loaded with Lycium barbarum Glycopeptide for Targeted Therapy of Noise-Triggered Auditory Dysfunction. Decoupling Density-Strength-Toughness in Wood Modification via Molecular Compaction. Size-Effect Stiffening and Densification Strain Regulation Shape Micro Metamaterials for Ultra-High, Cycle-Stable Energy Absorption. Engineering Temperature-Switchable Conducting Metal-Phenolic Network Films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1