Yair Razvag, Paz Drori, Shalhevet Klemfner, Eran Meshorer, Eitan Lerner
{"title":"FRETsael: Nanometer localization of biomolecular interactions using fluorescence lifetime imaging.","authors":"Yair Razvag, Paz Drori, Shalhevet Klemfner, Eran Meshorer, Eitan Lerner","doi":"10.1016/j.bpj.2025.02.017","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution light microscopy techniques facilitate the observation of nm-sized biomolecules, which are 1-2 orders of magnitude smaller than the diffraction limit of light. Using super-resolution microscopy techniques, it is possible to observe fluorescence from two biomolecules in close proximity; however, not necessarily in direct interaction. Using FRETsael, we localize biomolecular interactions exhibiting FRET with nanometer accuracy, from two-color fluorescence lifetime imaging data. The concepts of FRETsael were tested first against simulations, in which the recovered localization accuracy is 20-30 nm for true-positive detections of FRET pairs. Further analysis of the simulation results reports the conditions in which true-positive rates are maximal. We then show the capabilities of FRETsael on simulated samples of actin-vinculin and ER-ribosome interactions, as well as experimental samples of actin-myosin two-color confocal imaging. Overall, the FRETsael approach paves the way toward studying biomolecular interactions with improved spatial resolution from laser scanning confocal two-color fluorescence lifetime imaging.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.02.017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution light microscopy techniques facilitate the observation of nm-sized biomolecules, which are 1-2 orders of magnitude smaller than the diffraction limit of light. Using super-resolution microscopy techniques, it is possible to observe fluorescence from two biomolecules in close proximity; however, not necessarily in direct interaction. Using FRETsael, we localize biomolecular interactions exhibiting FRET with nanometer accuracy, from two-color fluorescence lifetime imaging data. The concepts of FRETsael were tested first against simulations, in which the recovered localization accuracy is 20-30 nm for true-positive detections of FRET pairs. Further analysis of the simulation results reports the conditions in which true-positive rates are maximal. We then show the capabilities of FRETsael on simulated samples of actin-vinculin and ER-ribosome interactions, as well as experimental samples of actin-myosin two-color confocal imaging. Overall, the FRETsael approach paves the way toward studying biomolecular interactions with improved spatial resolution from laser scanning confocal two-color fluorescence lifetime imaging.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.