Assessing hydrocarbon degradation capacity of Isoptericola peretonis sp. nov. and related species: a comparative study.

IF 4 2区 生物学 Q2 MICROBIOLOGY Frontiers in Microbiology Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1471121
Àngela Vidal-Verdú, Adriel Latorre-Pérez, Javier Pascual, Ruth Mañes-Collado, Aitana Nevot-Terraes, Manuel Porcar
{"title":"Assessing hydrocarbon degradation capacity of <i>Isoptericola peretonis</i> sp. nov. and related species: a comparative study.","authors":"Àngela Vidal-Verdú, Adriel Latorre-Pérez, Javier Pascual, Ruth Mañes-Collado, Aitana Nevot-Terraes, Manuel Porcar","doi":"10.3389/fmicb.2025.1471121","DOIUrl":null,"url":null,"abstract":"<p><p>Since the beginning of their production and use, fossil fuels have affected ecosystems, causing significant damage to their biodiversity. Bacterial bioremediation can provide solutions to this environmental problem. In this study, the new species <i>Isoptericola peretonis</i> sp. nov. 4D.3<sup>T</sup> has been characterized and compared to other closely related species in terms of hydrocarbon degradation and biosurfactant production by in vitro and in silico analyses. Biosurfactants play an important role in microbial hydrocarbon degradation by emulsifying hydrocarbons and making them accessible to the microbial degradation machinery. The tests performed showed positive results to a greater or lesser degree for all strains. In the synthesis of biosurfactants, all the strains tested showed biosurfactant activity in three complementary assays (CTAB, hemolysis and E<sub>24</sub>%) and rhamnolipid synthesis genes have been predicted in silico in the majority of <i>Isoptericola</i> strains. Regarding hydrocarbon degradation, all the <i>Isoptericola</i> strains analyzed presented putative genes responsible for the aerobic and anaerobic degradation of aromatic and alkane hydrocarbons. Overall, our results highlight the metabolic diversity and the biochemical robustness of the <i>Isoptericola</i> genus which is proposed to be of interest in the field of hydrocarbon bioremediation.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1471121"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1471121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the beginning of their production and use, fossil fuels have affected ecosystems, causing significant damage to their biodiversity. Bacterial bioremediation can provide solutions to this environmental problem. In this study, the new species Isoptericola peretonis sp. nov. 4D.3T has been characterized and compared to other closely related species in terms of hydrocarbon degradation and biosurfactant production by in vitro and in silico analyses. Biosurfactants play an important role in microbial hydrocarbon degradation by emulsifying hydrocarbons and making them accessible to the microbial degradation machinery. The tests performed showed positive results to a greater or lesser degree for all strains. In the synthesis of biosurfactants, all the strains tested showed biosurfactant activity in three complementary assays (CTAB, hemolysis and E24%) and rhamnolipid synthesis genes have been predicted in silico in the majority of Isoptericola strains. Regarding hydrocarbon degradation, all the Isoptericola strains analyzed presented putative genes responsible for the aerobic and anaerobic degradation of aromatic and alkane hydrocarbons. Overall, our results highlight the metabolic diversity and the biochemical robustness of the Isoptericola genus which is proposed to be of interest in the field of hydrocarbon bioremediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Biological characterization of novel Escherichia coli O157:H7 phages and their bacteriostatic effects in milk and pork. Comprehensive review of Plasmodiophora brassicae: pathogenesis, pathotype diversity, and integrated control methods. Corrigendum: Metabolic changes before and after weaning in Dezhou donkey foals in relation to gut microbiota. Drivers of methane-cycling archaeal abundances, community structure, and catabolic pathways in continental margin sediments. Fission yeast cells deficient in siderophore biosynthesis require Str2 for ferrichrome-dependent growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1