Fatima Ceballos Rodriguez-Conde, Sophie Zhu, Duygu Dikicioglu
{"title":"Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches.","authors":"Fatima Ceballos Rodriguez-Conde, Sophie Zhu, Duygu Dikicioglu","doi":"10.1080/07388551.2025.2455607","DOIUrl":null,"url":null,"abstract":"<p><p>Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2455607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.