Differential gene expression and unbalanced homeolog expression bias in 4 million-year-old allopolyploids of Nicotiana section Repandae.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2025-02-20 DOI:10.1093/gbe/evaf029
Talieh Ostovar, Jacob B Landis, Elizabeth W McCarthy, Nicolas Sierro, Amy Litt
{"title":"Differential gene expression and unbalanced homeolog expression bias in 4 million-year-old allopolyploids of Nicotiana section Repandae.","authors":"Talieh Ostovar, Jacob B Landis, Elizabeth W McCarthy, Nicolas Sierro, Amy Litt","doi":"10.1093/gbe/evaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Allopolyploidy, a phenomenon prevalent in angiosperms involving hybridization and whole-genome duplication, results in species with multiple subgenomes, altering genome structure and gene expression, leading to novel phenotypes. Allopolyploids often experience unbalanced homeolog expression bias, the preferential expression of homeologs from one of the two progenitor genomes. To explore the consequences of allopolyploidy and unbalanced homeolog expression bias, we investigate global gene expression and the fate of homeologs in Nicotiana (Solanaceae). We focus on Nicotiana section Repandae, including three allotetraploid species, N. nudicaulis, N. repanda, and N. stocktonii, derived from diploid progenitors N. sylvestris and N. obtusifolia ∼4.3 million years ago. We identify genes with differential expression and investigate expression of candidate genes for flower size variation. Our results show expression differences with the allopolyploids intermediate between the two progenitor species, with a slight bias toward N. obtusifolia. Moreover, we demonstrate unbalanced homeolog expression bias toward the N. obtusifolia subgenome across developmental stages in the allopolyploids, with a stronger bias in N. nudicaulis. In contrast, unbalanced homeolog expression bias shifts toward N. sylvestris for flower size genes in N. nudicaulis, showing that genes involved in particular phenotypes can display different patterns of unbalanced homeolog expression than the overall transcriptome. We also see differential expression of several known flower size genes across corolla developmental stages. Our results highlight the role of unbalanced homeolog expression bias in shaping the evolutionary trajectory of Nicotiana species and provide a foundation for future research into the ecological and evolutionary implications of allopolyploidy in flowering plants.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allopolyploidy, a phenomenon prevalent in angiosperms involving hybridization and whole-genome duplication, results in species with multiple subgenomes, altering genome structure and gene expression, leading to novel phenotypes. Allopolyploids often experience unbalanced homeolog expression bias, the preferential expression of homeologs from one of the two progenitor genomes. To explore the consequences of allopolyploidy and unbalanced homeolog expression bias, we investigate global gene expression and the fate of homeologs in Nicotiana (Solanaceae). We focus on Nicotiana section Repandae, including three allotetraploid species, N. nudicaulis, N. repanda, and N. stocktonii, derived from diploid progenitors N. sylvestris and N. obtusifolia ∼4.3 million years ago. We identify genes with differential expression and investigate expression of candidate genes for flower size variation. Our results show expression differences with the allopolyploids intermediate between the two progenitor species, with a slight bias toward N. obtusifolia. Moreover, we demonstrate unbalanced homeolog expression bias toward the N. obtusifolia subgenome across developmental stages in the allopolyploids, with a stronger bias in N. nudicaulis. In contrast, unbalanced homeolog expression bias shifts toward N. sylvestris for flower size genes in N. nudicaulis, showing that genes involved in particular phenotypes can display different patterns of unbalanced homeolog expression than the overall transcriptome. We also see differential expression of several known flower size genes across corolla developmental stages. Our results highlight the role of unbalanced homeolog expression bias in shaping the evolutionary trajectory of Nicotiana species and provide a foundation for future research into the ecological and evolutionary implications of allopolyploidy in flowering plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Amino acid properties, substitution rates, and the nearly neutral theory. Differential gene expression and unbalanced homeolog expression bias in 4 million-year-old allopolyploids of Nicotiana section Repandae. Horizontal transfer of msp130 genes and the evolution of metazoan biocalcification. A broad genome survey reveals widespread presence of secretoglobin genes in squamate and archosaur reptiles that flowered into diversity in mammals. Nanopore Sequencing of Amoebophrya sp. Reveals Novel Collection of Bacteria Putatively Associated with Karlodinium veneficum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1