Production of p-anisaldehyde via whole-cell transformation using recombinant E. coli expressing trans-anethole oxygenase.

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General and Applied Microbiology Pub Date : 2025-02-18 DOI:10.2323/jgam.2025.02.001
Zhikai Zhang, Qian Lin
{"title":"Production of p-anisaldehyde via whole-cell transformation using recombinant E. coli expressing trans-anethole oxygenase.","authors":"Zhikai Zhang, Qian Lin","doi":"10.2323/jgam.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>p-Anisaldehyde, a fragrance and flavour with important roles in food, cosmetics, and drug industries, is currently synthesized through chemical methods. Production of p-anisaldehyde by chemical oxidation of trans-anethole in industry gives rise to excessive by-products and adverse environmental impacts, whereas biological process would address such problems. Here, we presented a process of biotransformation of trans-anethole for production of p-anisaldehyde. The tao gene encoding for trans-anethole oxygenase (TAO) from Paraburkholderia sp. MR185 was fused with a solubilization tag GST and ProS2, respectively. GST did not exhibit solubility enhancement effect, whereas fusion with ProS2 significantly improved TAO's soluble expression in E. coli and the fusion protein ProS2-TAO-Sil3K accounted for more than 40% of total soluble proteins. ProS2-TAO-Sil3K was purified by simple silica affinity and its activity did not require addition of NADH, NADPH, and FAD. Metal ions Co<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>, and Cu<sup>2+</sup> displayed significant inhibition effect on TAO activity, and addition of Fe<sup>2+</sup> improved enzyme activity by 32.6%. After induction, engineered E. coli cells were used as whole-cell biocatalyst for transformation of trans-anethole, and the final concentration of p-anisaldehyde reached 10.18 mM (1.38 g/L), with the volumetric productivity of 0.11 g/L/h and conversion rate of 67.9%. These results reveal that the biosynthesis of p-anisaldehyde has a great potential in practice.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2025.02.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

p-Anisaldehyde, a fragrance and flavour with important roles in food, cosmetics, and drug industries, is currently synthesized through chemical methods. Production of p-anisaldehyde by chemical oxidation of trans-anethole in industry gives rise to excessive by-products and adverse environmental impacts, whereas biological process would address such problems. Here, we presented a process of biotransformation of trans-anethole for production of p-anisaldehyde. The tao gene encoding for trans-anethole oxygenase (TAO) from Paraburkholderia sp. MR185 was fused with a solubilization tag GST and ProS2, respectively. GST did not exhibit solubility enhancement effect, whereas fusion with ProS2 significantly improved TAO's soluble expression in E. coli and the fusion protein ProS2-TAO-Sil3K accounted for more than 40% of total soluble proteins. ProS2-TAO-Sil3K was purified by simple silica affinity and its activity did not require addition of NADH, NADPH, and FAD. Metal ions Co2+, Zn2+, Ni2+, and Cu2+ displayed significant inhibition effect on TAO activity, and addition of Fe2+ improved enzyme activity by 32.6%. After induction, engineered E. coli cells were used as whole-cell biocatalyst for transformation of trans-anethole, and the final concentration of p-anisaldehyde reached 10.18 mM (1.38 g/L), with the volumetric productivity of 0.11 g/L/h and conversion rate of 67.9%. These results reveal that the biosynthesis of p-anisaldehyde has a great potential in practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
期刊最新文献
Production of p-anisaldehyde via whole-cell transformation using recombinant E. coli expressing trans-anethole oxygenase. 24R005A and 24R005B: Novel radical scavengers of DPPH obtained from Streptomyces sp. cultured in a fish powder medium. Isolation and identification of naphtalene-degrading bacteria and its application in a two-phase partitioning bioreactor. Microbial community analysis of sand filters used to treat mine water from a closed uranium mine. Determination of double bond configuration of 2-hydroxy-fatty acids and emendation of cellular fatty acid composition of Aureispira marina and Aureispira maritima.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1