Melissa A Solem, Ross G Pelzel, Nicholas B Rozema, Taylor G Brown, Emma Reid, Rachel H Mansky, Rocio Gomez-Pastor
{"title":"Absence of hippocampal pathology persists in the Q175DN mouse model of Huntington's disease despite elevated HTT aggregation.","authors":"Melissa A Solem, Ross G Pelzel, Nicholas B Rozema, Taylor G Brown, Emma Reid, Rachel H Mansky, Rocio Gomez-Pastor","doi":"10.1177/18796397251316762","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Huntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.</p><p><strong>Objective: </strong>Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.</p><p><strong>Methods: </strong>We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.</p><p><strong>Results: </strong>We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1<sup>+</sup> microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.</p><p><strong>Conclusions: </strong>Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.</p>","PeriodicalId":16042,"journal":{"name":"Journal of Huntington's disease","volume":" ","pages":"18796397251316762"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Huntington's disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18796397251316762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Huntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.
Objective: Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.
Methods: We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.
Results: We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.
Conclusions: Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.