Tungsten-based polyoxometalate nanoclusters as ferroptosis inhibitors modulating S100A8/A9-mediated iron metabolism pathway for managing intracerebral haemorrhage.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-02-19 DOI:10.1186/s12951-025-03149-9
Yang Yang, Mingzhu Lv, Ruihong Liu, Peilu Yu, Ziyi Shen, Dazhang Bai, Peilin Zhao, Jin Yang, Xiaoping Tang, Hanfeng Yang, Yuan Yong, Guohui Jiang
{"title":"Tungsten-based polyoxometalate nanoclusters as ferroptosis inhibitors modulating S100A8/A9-mediated iron metabolism pathway for managing intracerebral haemorrhage.","authors":"Yang Yang, Mingzhu Lv, Ruihong Liu, Peilu Yu, Ziyi Shen, Dazhang Bai, Peilin Zhao, Jin Yang, Xiaoping Tang, Hanfeng Yang, Yuan Yong, Guohui Jiang","doi":"10.1186/s12951-025-03149-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intracerebral haemorrhage (ICH) is a devastating neurological disorder with high morbidity and mortality rates, largely owing to the lack of effective therapeutic strategies. Growing evidence has underscored the pivotal role of ferroptosis in intracerebral haemorrhage, and its contribution to neuronal death and exacerbation of brain injury, thus establishing it as a crucial target for therapeutic intervention. In recent years, polyoxometalate nanoclusters (NCs) have been applied in various neurodegenerative diseases, demonstrating neuroprotective effects. However, their impact on brain iron content and neurological function following ICH has yet to be reported. Here, we explored the potential of tungsten-based polyoxometalate (W-POM) NCs as ferroptosis inhibitors targeting the iron metabolic pathway mediated by S100A8/A9 for the treatment of ICH.</p><p><strong>Results: </strong>We successfully synthesized ultra-small reduced W-POM NCs that can rapidly cross the blood-brain barrier and are cleared through the kidney. In vitro experiments demonstrated that W-POM NCs exhibit significant and stable ROS scavenging activity while effectively alleviating iron overload and associated neuronal damage. In vivo, W-POM NCs treatment restored iron metabolism homeostasis, suppressed neuroinflammation and oxidative stress, ultimately alleviating severe neurological damage and motor deficits in ICH mice. Proteomic combined with bioinformatic analyses identified two core genes, S100A8 and S100A9, most associated with W-POM NCs intervention in ICH. Further experiments confirmed that W-POM NCs act by modulating the toll-like receptor 4/hepcidin/ferroportin signaling pathway, thereby regulating iron metabolism and reducing secondary brain injury.</p><p><strong>Conclusions: </strong>This study pioneers the application of polyoxometalates in intracerebral haemorrhage, offering a novel and promising therapeutic approach for the management of ferroptosis-related brain injuries.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"122"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03149-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intracerebral haemorrhage (ICH) is a devastating neurological disorder with high morbidity and mortality rates, largely owing to the lack of effective therapeutic strategies. Growing evidence has underscored the pivotal role of ferroptosis in intracerebral haemorrhage, and its contribution to neuronal death and exacerbation of brain injury, thus establishing it as a crucial target for therapeutic intervention. In recent years, polyoxometalate nanoclusters (NCs) have been applied in various neurodegenerative diseases, demonstrating neuroprotective effects. However, their impact on brain iron content and neurological function following ICH has yet to be reported. Here, we explored the potential of tungsten-based polyoxometalate (W-POM) NCs as ferroptosis inhibitors targeting the iron metabolic pathway mediated by S100A8/A9 for the treatment of ICH.

Results: We successfully synthesized ultra-small reduced W-POM NCs that can rapidly cross the blood-brain barrier and are cleared through the kidney. In vitro experiments demonstrated that W-POM NCs exhibit significant and stable ROS scavenging activity while effectively alleviating iron overload and associated neuronal damage. In vivo, W-POM NCs treatment restored iron metabolism homeostasis, suppressed neuroinflammation and oxidative stress, ultimately alleviating severe neurological damage and motor deficits in ICH mice. Proteomic combined with bioinformatic analyses identified two core genes, S100A8 and S100A9, most associated with W-POM NCs intervention in ICH. Further experiments confirmed that W-POM NCs act by modulating the toll-like receptor 4/hepcidin/ferroportin signaling pathway, thereby regulating iron metabolism and reducing secondary brain injury.

Conclusions: This study pioneers the application of polyoxometalates in intracerebral haemorrhage, offering a novel and promising therapeutic approach for the management of ferroptosis-related brain injuries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Remodeling tumor microenvironment using prodrug nMOFs for synergistic cancer therapy. Tungsten-based polyoxometalate nanoclusters as ferroptosis inhibitors modulating S100A8/A9-mediated iron metabolism pathway for managing intracerebral haemorrhage. A wearable enzyme sensor enabled by the floating-gate OECT with poly(benzimidazobenzophenanthroline) as the catalytic layer. Bio-nanocomplexes impair iron homeostasis to induce non-canonical ferroptosis in cancer cells. Enzymatically responsive nanocarriers targeting PD-1 and TGF-β pathways reverse immunotherapeutic resistance and elicit robust therapeutic efficacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1