Santiago Hernández-Gómez, Francesco Poggiali, Paola Cappellaro, Francesco S Cataliotti, Andrea Trombettoni, Nicole Fabbri, Stefano Gherardini
{"title":"Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states.","authors":"Santiago Hernández-Gómez, Francesco Poggiali, Paola Cappellaro, Francesco S Cataliotti, Andrea Trombettoni, Nicole Fabbri, Stefano Gherardini","doi":"10.1103/PhysRevE.111.014139","DOIUrl":null,"url":null,"abstract":"<p><p>Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluctuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal states, we identify a sufficient condition I for the existence of an energy scale factor η^{*} that is unique, finite, and time independent, such that the characteristic function of the energy exchange distribution becomes identically equal to 1 for any time. This η^{*} plays the role of the difference of inverse temperatures. We discuss the physical interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state. The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014139"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluctuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal states, we identify a sufficient condition I for the existence of an energy scale factor η^{*} that is unique, finite, and time independent, such that the characteristic function of the energy exchange distribution becomes identically equal to 1 for any time. This η^{*} plays the role of the difference of inverse temperatures. We discuss the physical interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state. The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.