In Vitro Evaluation of a Semi-Autologous Fibrin Sealant for Surgical Applications.

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2025-02-20 DOI:10.1002/mabi.202400165
Uri Elbaz, Ori Berliner, Shavit Tabo, Shani Yeshayahu, Reut Kesner, Dana Cohen-Gerassi, Lihi Adler-Abramovich, Michal Halperin-Sternfeld, Moran Aviv
{"title":"In Vitro Evaluation of a Semi-Autologous Fibrin Sealant for Surgical Applications.","authors":"Uri Elbaz, Ori Berliner, Shavit Tabo, Shani Yeshayahu, Reut Kesner, Dana Cohen-Gerassi, Lihi Adler-Abramovich, Michal Halperin-Sternfeld, Moran Aviv","doi":"10.1002/mabi.202400165","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical success relies on precise tissue approximation using sutures, clips, or staples. Fibrin sealant provides a user-friendly alternative, saving time and maintaining tissue integrity. Yet, its cost and potential bioburden risk are notable drawbacks. To address these concerns, a semi-autologous fibrin sealant is produced from human cryoprecipitate and compared it to a commercial fibrin sealant. The microstructure of the semi-autologous sealant closely resembles the commercial one. Initially, the commercial sealant has superior bonding strength, however, over time, both demonstrate strong adhesive properties. Moreover, when the two sealants contain equivalent fibrinogen concentrations, they show similar bonding strength and rheological properties, including thixotropic behavior, which is essential for their application as bioadhesives. Notably, it is discovered that the mechanical properties of the adhesive are mainly governed by the fibrinogen concentration, with minimal impact of other blood components. This understanding paves the way for the development of an efficient method to boost fibrinogen in blood without extensive separation. This study indicates semi-autologous fibrin glue matches commercial sealant in adhesive properties. This may offer several advantages, such as reduced bioburden, costs, improved immunomodulation, and reduced hypersensitivity and virus transmission risks. These findings hold promising prospects for enhancing the wound healing process in various medical conditions.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400165"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400165","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surgical success relies on precise tissue approximation using sutures, clips, or staples. Fibrin sealant provides a user-friendly alternative, saving time and maintaining tissue integrity. Yet, its cost and potential bioburden risk are notable drawbacks. To address these concerns, a semi-autologous fibrin sealant is produced from human cryoprecipitate and compared it to a commercial fibrin sealant. The microstructure of the semi-autologous sealant closely resembles the commercial one. Initially, the commercial sealant has superior bonding strength, however, over time, both demonstrate strong adhesive properties. Moreover, when the two sealants contain equivalent fibrinogen concentrations, they show similar bonding strength and rheological properties, including thixotropic behavior, which is essential for their application as bioadhesives. Notably, it is discovered that the mechanical properties of the adhesive are mainly governed by the fibrinogen concentration, with minimal impact of other blood components. This understanding paves the way for the development of an efficient method to boost fibrinogen in blood without extensive separation. This study indicates semi-autologous fibrin glue matches commercial sealant in adhesive properties. This may offer several advantages, such as reduced bioburden, costs, improved immunomodulation, and reduced hypersensitivity and virus transmission risks. These findings hold promising prospects for enhancing the wound healing process in various medical conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
Evaluation of Electrospun Poly-4-Hydroxybutyrate as Biofunctional and Degradable Scaffold for Pelvic Organ Prolapse in a Vaginal Sheep Model. Adjusting Morphology, Structure, and Mechanical Properties of Electrospun High-Molecular-Weight Poly(l-Lactic-Acid) Nanofibrous Yarns Through Hot Stretching Treatment. Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo. In Vitro Evaluation of a Semi-Autologous Fibrin Sealant for Surgical Applications. Melanin-Inspired Maleimide Coatings on Various Substrates for Rapid Thiol Functionalization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1