The Effect of Backscatter Anisotropy in Assessing Hepatic Steatosis Using Ultrasound Hepatorenal Index.

IF 2.1 4区 医学 Q2 ACOUSTICS Journal of Ultrasound in Medicine Pub Date : 2025-02-19 DOI:10.1002/jum.16669
Jing Gao, Ben Wilde, Oliver D Kripfgans, Johnson Chen, Jonathan M Rubin
{"title":"The Effect of Backscatter Anisotropy in Assessing Hepatic Steatosis Using Ultrasound Hepatorenal Index.","authors":"Jing Gao, Ben Wilde, Oliver D Kripfgans, Johnson Chen, Jonathan M Rubin","doi":"10.1002/jum.16669","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To discuss challenges in assessing hepatic steatosis using ultrasound hepatorenal index (HRI).</p><p><strong>Methods: </strong>We retrospectively analyzed HRI and liver magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) in 134 adult participants (53 men and 81 women, mean age 55 years). The diagnostic performance of HRI for determining hepatic steatosis was tested by the area under the receiver operating characteristic curve (AUROC) using liver MRI-PDFF as the reference. Regression plots were employed to compare the sampling sites in liver and kidney that were used to calculate HRIs.</p><p><strong>Results: </strong>In 11 of 134 cases (8.2%), we failed to acquire HRI measurements. In the remaining 123 cases, AUROC for HRI (cutoff: 1.69 ± 0.13 [mean ± standard deviation]) for defining the HRI threshold for diagnosing hepatic steatosis was 0.83. In 60 of 123 cases (49%) with HRI measurement IQR/median >0.3, slopes of the regression lines in the liver showed backscatter intensity changes consistent with signal attenuation. However, in the kidney, the backscatter intensity was inverted yielding position-dependent HRI cutoff values, mid-pole = 2.24 ± 0.20 and upper pole = 1.08 ± 0.16.</p><p><strong>Conclusions: </strong>HRI is used to estimate liver steatosis based on backscattered ultrasound. In order to compensate for effects such as body habitus and transducer frequency, the liver backscatter is divided by backscatter from a corresponding region at the same depth in the right renal cortex. Theoretically, this compensation should make HRI sampling position independent. Yet, due to renal cortical backscatter anisotropy, this compensation method does not work in general, potentially producing inaccurate liver fat estimates.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.16669","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To discuss challenges in assessing hepatic steatosis using ultrasound hepatorenal index (HRI).

Methods: We retrospectively analyzed HRI and liver magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) in 134 adult participants (53 men and 81 women, mean age 55 years). The diagnostic performance of HRI for determining hepatic steatosis was tested by the area under the receiver operating characteristic curve (AUROC) using liver MRI-PDFF as the reference. Regression plots were employed to compare the sampling sites in liver and kidney that were used to calculate HRIs.

Results: In 11 of 134 cases (8.2%), we failed to acquire HRI measurements. In the remaining 123 cases, AUROC for HRI (cutoff: 1.69 ± 0.13 [mean ± standard deviation]) for defining the HRI threshold for diagnosing hepatic steatosis was 0.83. In 60 of 123 cases (49%) with HRI measurement IQR/median >0.3, slopes of the regression lines in the liver showed backscatter intensity changes consistent with signal attenuation. However, in the kidney, the backscatter intensity was inverted yielding position-dependent HRI cutoff values, mid-pole = 2.24 ± 0.20 and upper pole = 1.08 ± 0.16.

Conclusions: HRI is used to estimate liver steatosis based on backscattered ultrasound. In order to compensate for effects such as body habitus and transducer frequency, the liver backscatter is divided by backscatter from a corresponding region at the same depth in the right renal cortex. Theoretically, this compensation should make HRI sampling position independent. Yet, due to renal cortical backscatter anisotropy, this compensation method does not work in general, potentially producing inaccurate liver fat estimates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
4.30%
发文量
205
审稿时长
1.5 months
期刊介绍: The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community. Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to: -Basic Science- Breast Ultrasound- Contrast-Enhanced Ultrasound- Dermatology- Echocardiography- Elastography- Emergency Medicine- Fetal Echocardiography- Gastrointestinal Ultrasound- General and Abdominal Ultrasound- Genitourinary Ultrasound- Gynecologic Ultrasound- Head and Neck Ultrasound- High Frequency Clinical and Preclinical Imaging- Interventional-Intraoperative Ultrasound- Musculoskeletal Ultrasound- Neurosonology- Obstetric Ultrasound- Ophthalmologic Ultrasound- Pediatric Ultrasound- Point-of-Care Ultrasound- Public Policy- Superficial Structures- Therapeutic Ultrasound- Ultrasound Education- Ultrasound in Global Health- Urologic Ultrasound- Vascular Ultrasound
期刊最新文献
Differences in the Sonographic Features of Adenomyosis and Concurrent Endometriosis Compared to Isolated Adenomyosis: A MUSA Criteria Analysis. The Effect of Backscatter Anisotropy in Assessing Hepatic Steatosis Using Ultrasound Hepatorenal Index. Advancing Osteoporosis Assessment Through a Numerical Study Utilizing Ultrasonic Waves in Femur Bone Evaluation. Diagnosis of Thyroid Nodule Malignancy Using Peritumoral Region and Artificial Intelligence: Results of Hand-Crafted, Deep Radiomics Features and Radiologists' Assessment in Multicenter Cohorts. Prenatal Diagnosis and Classification of Type I Persistent Left Superior Vena Cava.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1