A Bayesian phylodynamic inference framework for single-cell CRISPR/Cas9 lineage tracing barcode data with dependent target sites.

IF 5.4 2区 生物学 Q1 BIOLOGY Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2025-02-13 Epub Date: 2025-02-20 DOI:10.1098/rstb.2023.0318
A Zwaans, S Seidel, M Manceau, T Stadler
{"title":"A Bayesian phylodynamic inference framework for single-cell CRISPR/Cas9 lineage tracing barcode data with dependent target sites.","authors":"A Zwaans, S Seidel, M Manceau, T Stadler","doi":"10.1098/rstb.2023.0318","DOIUrl":null,"url":null,"abstract":"<p><p>Analysing single-cell lineage relationships of an organism is crucial towards understanding the fundamental cellular dynamics that drive development. Clustered regularly interspaced short palindromic repeats (CRISPR)-based dynamic lineage tracing relies on recent advances in genome editing and sequencing technologies to generate inheritable, evolving genetic barcode sequences that enable reconstruction of such cell lineage trees, also referred to as phylogenetic trees. Recent work generated custom computational strategies to produce robust tree estimates from such data. We further capitalize on these advancements and introduce GESTALT analysis using Bayesian inference (GABI), which extends the analysis of genome editing of synthetic target arrays for lineage tracing (GESTALT) data to a fully integrated Bayesian phylogenetic inference framework in software BEAST 2. This implementation allows users to represent the uncertainty in reconstructed trees and enables their scaling in absolute time. Furthermore, based on such time-scaled lineage trees, the underlying processes of growth, differentiation and apoptosis are quantified through so-called phylodynamic inference, typically relying on a birth-death or coalescent model. After validating its implementation, we demonstrate that our methodology results in robust estimates of growth dynamics characteristic of early <i>Danio rerio</i> development. GABI's codebase is publicly available at https://github.com/azwaans/GABI.This article is part of the theme issue '\"A mathematical theory of evolution\": phylogenetic models dating back 100 years'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1919","pages":"20230318"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analysing single-cell lineage relationships of an organism is crucial towards understanding the fundamental cellular dynamics that drive development. Clustered regularly interspaced short palindromic repeats (CRISPR)-based dynamic lineage tracing relies on recent advances in genome editing and sequencing technologies to generate inheritable, evolving genetic barcode sequences that enable reconstruction of such cell lineage trees, also referred to as phylogenetic trees. Recent work generated custom computational strategies to produce robust tree estimates from such data. We further capitalize on these advancements and introduce GESTALT analysis using Bayesian inference (GABI), which extends the analysis of genome editing of synthetic target arrays for lineage tracing (GESTALT) data to a fully integrated Bayesian phylogenetic inference framework in software BEAST 2. This implementation allows users to represent the uncertainty in reconstructed trees and enables their scaling in absolute time. Furthermore, based on such time-scaled lineage trees, the underlying processes of growth, differentiation and apoptosis are quantified through so-called phylodynamic inference, typically relying on a birth-death or coalescent model. After validating its implementation, we demonstrate that our methodology results in robust estimates of growth dynamics characteristic of early Danio rerio development. GABI's codebase is publicly available at https://github.com/azwaans/GABI.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
Changes of division of labour along the eusociality spectrum in termites, with comparisons to multicellularity. Cultural evolution, social ratcheting and the evolution of human division of labour. Division of labour as key driver of social evolution. Division of labour during honeybee colony defence: poetic and scientific views. Division of labour in colony defence in a clonal ant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1