Construction and validation of a prognostic signature using WGCNA-identified key genes in osteosarcoma for treatment evaluation.

IF 1.5 4区 医学 Q4 ONCOLOGY Translational cancer research Pub Date : 2025-01-31 Epub Date: 2025-01-23 DOI:10.21037/tcr-24-1398
Zhuo Chen, Renhua Ni, Yuanyu Hu, Yiyuan Yang, Jiawen Chen, Yun Tian
{"title":"Construction and validation of a prognostic signature using WGCNA-identified key genes in osteosarcoma for treatment evaluation.","authors":"Zhuo Chen, Renhua Ni, Yuanyu Hu, Yiyuan Yang, Jiawen Chen, Yun Tian","doi":"10.21037/tcr-24-1398","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma (OS) is an aggressive and fast-growing malignant tumor associated with high mortality. Early diagnosis and prompt treatment can markedly enhance prognosis and increase survival rates. Constructing prognostic models can effectively predict OS progression, assist in patient diagnosis, and provide personalized treatment plans. In this study, we identified OS-related prognostic genes using the weighted gene co-expression network analysis (WGCNA) method to construct and validate a robust prognostic model, providing guidance for patient risk assessment and clinical treatment.</p><p><strong>Methods: </strong>Clinical data for OS samples were collected from the Gene Expression Omnibus (GEO) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) databases. Statistical analyses, including enrichment analysis, cluster analysis, and model construction, were performed using the R programme.</p><p><strong>Results: </strong>The WGCNA method was used to identify genes which were important to OS development and progression, screening for those relevant to prognosis to build a reliable and widely applicable model. To enhance the model's applicability to diverse OS patient populations, we initially conducted a clustering analysis based on the identified prognostic-related key genes. We then identified differentially expressed genes (DEGs) between clusters and used these genes to subtype OS patients, assessing their ability to distinguish among different patient populations. Subsequently, we selected prognostic-related DEGs to establish the prognostic model, resulting in a risk scoring method utilizing the expression of creatine kinase, mitochondrial 2 (<i>CKMT2</i>) and cell growth regulator with EF-hand domain 1 (<i>CGREF1</i>). We validated the predictive capability of the constructed prognostic model, confirming its robust predictive performance. Finally, based on our prognostic model, we analyzed the immune infiltration and drug sensitivity of OS patients, aiding in evaluating responses to immunotherapy and optimizing treatment plans.</p><p><strong>Conclusions: </strong>A predictive model based on OS-related prognostic genes was constructed to accurately evaluate risk and guide treatment in OS patients, and <i>CKMT2</i> and <i>CGREF1</i> were identified as potential therapeutic targets.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 1","pages":"254-271"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteosarcoma (OS) is an aggressive and fast-growing malignant tumor associated with high mortality. Early diagnosis and prompt treatment can markedly enhance prognosis and increase survival rates. Constructing prognostic models can effectively predict OS progression, assist in patient diagnosis, and provide personalized treatment plans. In this study, we identified OS-related prognostic genes using the weighted gene co-expression network analysis (WGCNA) method to construct and validate a robust prognostic model, providing guidance for patient risk assessment and clinical treatment.

Methods: Clinical data for OS samples were collected from the Gene Expression Omnibus (GEO) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) databases. Statistical analyses, including enrichment analysis, cluster analysis, and model construction, were performed using the R programme.

Results: The WGCNA method was used to identify genes which were important to OS development and progression, screening for those relevant to prognosis to build a reliable and widely applicable model. To enhance the model's applicability to diverse OS patient populations, we initially conducted a clustering analysis based on the identified prognostic-related key genes. We then identified differentially expressed genes (DEGs) between clusters and used these genes to subtype OS patients, assessing their ability to distinguish among different patient populations. Subsequently, we selected prognostic-related DEGs to establish the prognostic model, resulting in a risk scoring method utilizing the expression of creatine kinase, mitochondrial 2 (CKMT2) and cell growth regulator with EF-hand domain 1 (CGREF1). We validated the predictive capability of the constructed prognostic model, confirming its robust predictive performance. Finally, based on our prognostic model, we analyzed the immune infiltration and drug sensitivity of OS patients, aiding in evaluating responses to immunotherapy and optimizing treatment plans.

Conclusions: A predictive model based on OS-related prognostic genes was constructed to accurately evaluate risk and guide treatment in OS patients, and CKMT2 and CGREF1 were identified as potential therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
期刊最新文献
Exploration of key pathogenic mechanisms and potential intervention targets of the traditional Chinese medicine Coptis chinensis in the treatment of cervical cancer based on network pharmacology and molecular docking techniques. FTO-mediated m6A demethylation of SERPINE1 mRNA promotes tumor progression in hypopharyngeal squamous cell carcinoma. How to select between osimertinib or afatinib in P-loop and αC-helix compressing (G719X, S768I) or classical-like (L861Q) EGFR mutations: what preclinical models and clinical data have taught us in the early 2020s. Identification and validation of LINC02381 as a biomarker associated with lymph node metastasis in esophageal squamous cell carcinoma. Immune checkpoint inhibitors plus paclitaxel-based chemotherapy vs. oxaliplatin-based therapy as first-line treatment for patients with HER2-negative unresectable or metastatic gastric/gastroesophageal junction cancer: results of a multicenter retrospective study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1