Unlocking the future: mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response.

IF 1.5 4区 医学 Q4 ONCOLOGY Translational cancer research Pub Date : 2025-01-31 Epub Date: 2025-01-17 DOI:10.21037/tcr-24-1233
Zhijian Tang, Yuanming Pan, Wei Li, Ruiqiong Ma, Jianliu Wang
{"title":"Unlocking the future: mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response.","authors":"Zhijian Tang, Yuanming Pan, Wei Li, Ruiqiong Ma, Jianliu Wang","doi":"10.21037/tcr-24-1233","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial genes are involved in the tumor metabolism of ovarian cancer (OC), affecting immune cell infiltration and treatment response. We aimed to utilize mitochondrial genes to predict OC prognosis and immunotherapy response.</p><p><strong>Methods: </strong>The prognosis data, immunotherapy efficacy and next generation sequencing data of OC patients were downloaded from The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO). Mitochondrial genes were sourced from the MitoCarta3.0 database. Seventy percent of the patients were randomly selected as the discovery cohort for model construction, while the remaining 30% constituted the validation cohort for model assessment. Using the expression of mitochondrial genes as the predictor variable and based on the neural network algorithm, the overall survival (OS) time and immunotherapy efficacy (complete or partial response) of the included patients were predicted.</p><p><strong>Results: </strong>There were 375 OC patients included to construct the prognostic model, and 26 patients were included to construct the immune efficacy model. The average area under the receiver operating characteristic curve (AUC) of the prognostic model was: 0.7268 [95% confidence interval (CI), 0.7258-0.7278] in the discovery cohort and 0.6475 (95% CI: 0.6466-0.6484) in the validation cohort. The average AUC of the immunotherapy efficacy model was: 0.9444 (95% CI: 0.8333-1.0000) in the discovery cohort and 0.9167 (95% CI: 0.6667-1.0000) in the validation cohort.</p><p><strong>Conclusions: </strong>The application of mitochondrial genes and neural networks shows potential in predicting the prognosis and immunotherapy response in OC patients. And this approach could provide valuable insights for personalized treatment strategies.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"14 1","pages":"512-521"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-1233","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mitochondrial genes are involved in the tumor metabolism of ovarian cancer (OC), affecting immune cell infiltration and treatment response. We aimed to utilize mitochondrial genes to predict OC prognosis and immunotherapy response.

Methods: The prognosis data, immunotherapy efficacy and next generation sequencing data of OC patients were downloaded from The Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO). Mitochondrial genes were sourced from the MitoCarta3.0 database. Seventy percent of the patients were randomly selected as the discovery cohort for model construction, while the remaining 30% constituted the validation cohort for model assessment. Using the expression of mitochondrial genes as the predictor variable and based on the neural network algorithm, the overall survival (OS) time and immunotherapy efficacy (complete or partial response) of the included patients were predicted.

Results: There were 375 OC patients included to construct the prognostic model, and 26 patients were included to construct the immune efficacy model. The average area under the receiver operating characteristic curve (AUC) of the prognostic model was: 0.7268 [95% confidence interval (CI), 0.7258-0.7278] in the discovery cohort and 0.6475 (95% CI: 0.6466-0.6484) in the validation cohort. The average AUC of the immunotherapy efficacy model was: 0.9444 (95% CI: 0.8333-1.0000) in the discovery cohort and 0.9167 (95% CI: 0.6667-1.0000) in the validation cohort.

Conclusions: The application of mitochondrial genes and neural networks shows potential in predicting the prognosis and immunotherapy response in OC patients. And this approach could provide valuable insights for personalized treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
252
期刊介绍: Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.
期刊最新文献
Exploration of key pathogenic mechanisms and potential intervention targets of the traditional Chinese medicine Coptis chinensis in the treatment of cervical cancer based on network pharmacology and molecular docking techniques. FTO-mediated m6A demethylation of SERPINE1 mRNA promotes tumor progression in hypopharyngeal squamous cell carcinoma. How to select between osimertinib or afatinib in P-loop and αC-helix compressing (G719X, S768I) or classical-like (L861Q) EGFR mutations: what preclinical models and clinical data have taught us in the early 2020s. Identification and validation of LINC02381 as a biomarker associated with lymph node metastasis in esophageal squamous cell carcinoma. Immune checkpoint inhibitors plus paclitaxel-based chemotherapy vs. oxaliplatin-based therapy as first-line treatment for patients with HER2-negative unresectable or metastatic gastric/gastroesophageal junction cancer: results of a multicenter retrospective study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1