[Mechanism of sodium valproate in inhibiting ferroptosis of bone marrow mesenchymal stem cells via the adenosine monophosphate-activated protein kinase/Sirtuin 1 axis].

Qingsong Gu, Jianqiao Li, Yuhu Chen, Linhui Wang, Yiheng Li, Ziru Wang, Yicong Wang, Min Yang
{"title":"[Mechanism of sodium valproate in inhibiting ferroptosis of bone marrow mesenchymal stem cells via the adenosine monophosphate-activated protein kinase/Sirtuin 1 axis].","authors":"Qingsong Gu, Jianqiao Li, Yuhu Chen, Linhui Wang, Yiheng Li, Ziru Wang, Yicong Wang, Min Yang","doi":"10.7507/1002-1892.202411089","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the effects of sodium valproate (VPA) in inhibiting Erastin-induced ferroptosis in bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms.</p><p><strong>Methods: </strong>BMSCs were isolated from bone marrow of 8-week-old Spragur Dawley rats and identified [cell surface antigens CD90, CD44, and CD45 were analyzed by flow cytometry, and osteogenic and adipogenic differentiation abilities were assessed by alizarin red S (ARS) and oil red O staining, respectively]. Cells of passage 3 were used for the Erastin-induced ferroptosis model, with different concentrations of VPA for intervention. The optimal drug concentration was determined using the cell counting kit 8 assay. The experiment was divided into 4 groups: group A, cells were cultured in osteogenic induction medium for 24 hours; group B, cells were cultured in osteogenic induction medium containing optimal concentration Erastin for 24 hours; group C, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA for 24 hours; group D, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA, and 8 μmol/L EX527 for 24 hours. The mitochondrial state of the cells was evaluated, including the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS). Osteogenic capacity was assessed by alkaline phosphatase (ALP) activity and ARS staining. Western blot analysis was performed to detect the expressions of osteogenic-related proteins [Runt-related transcription factor 2 (RUNX2) and osteopontin (OPN)], ferroptosis-related proteins [glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11)], and pathway-related proteins [adenosine monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1)].</p><p><strong>Results: </strong>The cultured cells were identified as BMSCs. VPA inhibited Erastin-induced ferroptosis and the decline of osteogenic ability in BMSCs, acting through the activation of the AMPK/SIRT1 pathway. VPA significantly reduced the levels of ROS and MDA in Erastin-treated BMSCs and significantly increased GSH levels. Additionally, the expression levels of ferroptosis-related proteins (GPX4, FTH1, and SLC7A11) significantly decreased. VPA also upregulated the expressions of osteogenic-related proteins (RUNX2 and OPN), enhanced mineralization and osteogenic differentiation, and increased the expressions of pathway-related proteins (AMPK and SIRT1). These effects could be reversed by the SIRT1 inhibitor EX527.</p><p><strong>Conclusion: </strong>VPA inhibits ferroptosis in BMSCs through the AMPK/SIRT1 axis and promotes osteogenesis.</p>","PeriodicalId":23979,"journal":{"name":"中国修复重建外科杂志","volume":"39 2","pages":"215-223"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国修复重建外科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7507/1002-1892.202411089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the effects of sodium valproate (VPA) in inhibiting Erastin-induced ferroptosis in bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms.

Methods: BMSCs were isolated from bone marrow of 8-week-old Spragur Dawley rats and identified [cell surface antigens CD90, CD44, and CD45 were analyzed by flow cytometry, and osteogenic and adipogenic differentiation abilities were assessed by alizarin red S (ARS) and oil red O staining, respectively]. Cells of passage 3 were used for the Erastin-induced ferroptosis model, with different concentrations of VPA for intervention. The optimal drug concentration was determined using the cell counting kit 8 assay. The experiment was divided into 4 groups: group A, cells were cultured in osteogenic induction medium for 24 hours; group B, cells were cultured in osteogenic induction medium containing optimal concentration Erastin for 24 hours; group C, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA for 24 hours; group D, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA, and 8 μmol/L EX527 for 24 hours. The mitochondrial state of the cells was evaluated, including the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS). Osteogenic capacity was assessed by alkaline phosphatase (ALP) activity and ARS staining. Western blot analysis was performed to detect the expressions of osteogenic-related proteins [Runt-related transcription factor 2 (RUNX2) and osteopontin (OPN)], ferroptosis-related proteins [glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11)], and pathway-related proteins [adenosine monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1)].

Results: The cultured cells were identified as BMSCs. VPA inhibited Erastin-induced ferroptosis and the decline of osteogenic ability in BMSCs, acting through the activation of the AMPK/SIRT1 pathway. VPA significantly reduced the levels of ROS and MDA in Erastin-treated BMSCs and significantly increased GSH levels. Additionally, the expression levels of ferroptosis-related proteins (GPX4, FTH1, and SLC7A11) significantly decreased. VPA also upregulated the expressions of osteogenic-related proteins (RUNX2 and OPN), enhanced mineralization and osteogenic differentiation, and increased the expressions of pathway-related proteins (AMPK and SIRT1). These effects could be reversed by the SIRT1 inhibitor EX527.

Conclusion: VPA inhibits ferroptosis in BMSCs through the AMPK/SIRT1 axis and promotes osteogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
中国修复重建外科杂志
中国修复重建外科杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
11334
期刊介绍:
期刊最新文献
[A feasibility study of the EMO scoring system to guide proximal tibial transverse transport in treatment of diabetic foot wounds]. [A study of early graft healing after anterior cruciate ligament reconstruction in over-the-top position]. [Advances in MRI-based bone quality scoring systems and their clinical applications]. [Analgesic effect of "cocktail" analgesia containing high-dose compound betamethasone after revision hip arthroplasty and the use of opioid drugs]. [Analysis of demographic and clinical characteristics of 744 inpatients with osteoporotic vertebral compression fractures].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1