Automated tools for systematic review screening methods: an application of machine learning for sexual orientation and gender identity measurement in health research.

IF 2.9 4区 医学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Journal of the Medical Library Association Pub Date : 2025-01-14 DOI:10.5195/jmla.2025.1860
Ashleigh J Rich, Emma L McGorray, Carrie Baldwin-SoRelle, Michelle Cawley, Karen Grigg, Lauren B Beach, Gregory Phillips, Tonia Poteat
{"title":"Automated tools for systematic review screening methods: an application of machine learning for sexual orientation and gender identity measurement in health research.","authors":"Ashleigh J Rich, Emma L McGorray, Carrie Baldwin-SoRelle, Michelle Cawley, Karen Grigg, Lauren B Beach, Gregory Phillips, Tonia Poteat","doi":"10.5195/jmla.2025.1860","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Sexual and gender minority (SGM) populations experience health disparities compared to heterosexual and cisgender populations. The development of accurate, comprehensive sexual orientation and gender identity (SOGI) measures is fundamental to quantify and address SGM disparities, which first requires identifying SOGI-related research. As part of a larger project reviewing and synthesizing how SOGI has been assessed within the health literature, we provide an example of the application of automated tools for systematic reviews to the area of SOGI measurement.</p><p><strong>Methods: </strong>In collaboration with research librarians, a three-phase approach was used to prioritize screening for a set of 11,441 SOGI measurement studies published since 2012. In Phase 1, search results were stratified into two groups (title with vs. without measurement-related terms); titles with measurement-related terms were manually screened. In Phase 2, supervised clustering using DoCTER software was used to sort the remaining studies based on relevance. In Phase 3, supervised machine learning using DoCTER was used to further identify which studies deemed low relevance in Phase 2 should be prioritized for manual screening.</p><p><strong>Results: </strong>1,607 studies were identified in Phase 1. Across Phases 2 and 3, the research team excluded 5,056 of the remaining 9,834 studies using DoCTER. In manual review, the percentage of relevant studies in results screened manually was low, ranging from 0.1 to 7.8 percent.</p><p><strong>Conclusions: </strong>Automated tools used in collaboration with research librarians have the potential to save hundreds of hours of human labor in large-scale systematic reviews of SGM health research.</p>","PeriodicalId":47690,"journal":{"name":"Journal of the Medical Library Association","volume":"113 1","pages":"31-38"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Medical Library Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5195/jmla.2025.1860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Sexual and gender minority (SGM) populations experience health disparities compared to heterosexual and cisgender populations. The development of accurate, comprehensive sexual orientation and gender identity (SOGI) measures is fundamental to quantify and address SGM disparities, which first requires identifying SOGI-related research. As part of a larger project reviewing and synthesizing how SOGI has been assessed within the health literature, we provide an example of the application of automated tools for systematic reviews to the area of SOGI measurement.

Methods: In collaboration with research librarians, a three-phase approach was used to prioritize screening for a set of 11,441 SOGI measurement studies published since 2012. In Phase 1, search results were stratified into two groups (title with vs. without measurement-related terms); titles with measurement-related terms were manually screened. In Phase 2, supervised clustering using DoCTER software was used to sort the remaining studies based on relevance. In Phase 3, supervised machine learning using DoCTER was used to further identify which studies deemed low relevance in Phase 2 should be prioritized for manual screening.

Results: 1,607 studies were identified in Phase 1. Across Phases 2 and 3, the research team excluded 5,056 of the remaining 9,834 studies using DoCTER. In manual review, the percentage of relevant studies in results screened manually was low, ranging from 0.1 to 7.8 percent.

Conclusions: Automated tools used in collaboration with research librarians have the potential to save hundreds of hours of human labor in large-scale systematic reviews of SGM health research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Medical Library Association
Journal of the Medical Library Association INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.10
自引率
10.00%
发文量
39
审稿时长
26 weeks
期刊介绍: The Journal of the Medical Library Association (JMLA) is an international, peer-reviewed journal published quarterly that aims to advance the practice and research knowledgebase of health sciences librarianship. The most current impact factor for the JMLA (from the 2007 edition of Journal Citation Reports) is 1.392.
期刊最新文献
JMLA virtual projects continue to show impact of technologies in health sciences libraries. Amy Blevins, Medical Library Association President, 2023-2024. Automated tools for systematic review screening methods: an application of machine learning for sexual orientation and gender identity measurement in health research. A scoping review of librarian involvement in competency-based medical education. Algorithmic indexing in MEDLINE frequently overlooks important concepts and may compromise literature search results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1