Fine Scale Spatial and Temporal Allocation of NOx Emissions from Unconventional Oil and Gas Development Can Result in Increased Predicted Regional Ozone Formation.

ACS ES&T Air Pub Date : 2024-12-30 eCollection Date: 2025-02-14 DOI:10.1021/acsestair.4c00077
Mrinali Modi, Yosuke Kimura, Lea Hildebrandt Ruiz, David T Allen
{"title":"Fine Scale Spatial and Temporal Allocation of NOx Emissions from Unconventional Oil and Gas Development Can Result in Increased Predicted Regional Ozone Formation.","authors":"Mrinali Modi, Yosuke Kimura, Lea Hildebrandt Ruiz, David T Allen","doi":"10.1021/acsestair.4c00077","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of detailed spatial and temporal allocation of unconventional oil and gas development (UOGD) NOx emissions on predicted ozone formation was examined using hydraulic fracturing emissions in the Eagle Ford Shale region of Texas as a case study. Hydraulic fracturing occurs at specific well sites, lasting only 1-2 weeks prior to production. Four scenarios for spatial and temporal allocation of hydraulic fracturing NOx emissions were developed. In one scenario, NOx emissions were evenly distributed to all active wells in the Eagle Ford region, with continuous emissions throughout the year. In other scenarios, NOx emissions from hydraulic fracturing engines in Karnes County were allocated only to fractured wells, with durations ranging from 2 days to 2 weeks. In the month of August, predicted daily maximum of 8 h average (MDA8) O<sub>3</sub> concentrations were consistently 6, 8, and 10 ppb higher over wide regions for the two-week, one-week, and two-day emission periods, respectively, compared to the annual county level distribution, demonstrating that detailed spatial and temporal allocation of NOx emissions in regions like the Eagle Ford Shale, with abundant biogenic VOCs, impacts predicted ozone formation.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 2","pages":"130-140"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestair.4c00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of detailed spatial and temporal allocation of unconventional oil and gas development (UOGD) NOx emissions on predicted ozone formation was examined using hydraulic fracturing emissions in the Eagle Ford Shale region of Texas as a case study. Hydraulic fracturing occurs at specific well sites, lasting only 1-2 weeks prior to production. Four scenarios for spatial and temporal allocation of hydraulic fracturing NOx emissions were developed. In one scenario, NOx emissions were evenly distributed to all active wells in the Eagle Ford region, with continuous emissions throughout the year. In other scenarios, NOx emissions from hydraulic fracturing engines in Karnes County were allocated only to fractured wells, with durations ranging from 2 days to 2 weeks. In the month of August, predicted daily maximum of 8 h average (MDA8) O3 concentrations were consistently 6, 8, and 10 ppb higher over wide regions for the two-week, one-week, and two-day emission periods, respectively, compared to the annual county level distribution, demonstrating that detailed spatial and temporal allocation of NOx emissions in regions like the Eagle Ford Shale, with abundant biogenic VOCs, impacts predicted ozone formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Wildland Fire Smoke Adds to Disproportionate PM2.5 Exposure in the United States Forest Mercury Deposition Observation in Chongqing: Evaluating Effectiveness of Mercury Pollution Control over the Past Decade in Southwestern China Kinetic Modeling of Secondary Organic Aerosol in a Weather-Chemistry Model: Parameterizations, Processes, and Predictions for GOAmazon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1