{"title":"Diabetic foot ulcer classification assessment employing an improved machine learning algorithm.","authors":"Raj Kumar Gudivaka, Rajya Lakshmi Gudivaka, Basava Ramanjaneyulu Gudivaka, Dinesh Kumar Reddy Basani, Sri Harsha Grandhi, Faheem Khan","doi":"10.1177/09287329241296417","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic foot ulcers (DFU) are a severe consequence of diabetes that, if left untreated, can lead to amputation, blindness, renal failure, and other serious complications. The high treatment expense and length of treatment for this therapeutic technique are both disadvantages. Despite the effectiveness of this strategy, a distant, cost-effective, and comfortable DFU diagnostic therapy is necessary.</p><p><strong>Objective: </strong>This study proposed the Advanced Machine Learning Practical Method for Diabetic Foot Ulcer Classification.</p><p><strong>Methods: </strong>This unique and cost-effective healthcare solution uses Practical Methodologies with the reinforcement learning algorithm for DFU imaging. The categorization was based on constant technological advancements, and the benefits of Machine Learning (ML) for use in DFU treatment are numerous, including enhanced clinical decision-making based on Ulcer classification and healing progress. The ML greatly impacted DFU data analysis, with categorization and risk assessment among the findings.</p><p><strong>Results: </strong>The machine-learning technique can potentially create a paradigm shift by providing a 92.5% classification accuracy evaluation in the diabetic foot Ulcer problem. According to Clustering Scenario Analysis of Diabetic Foot Ulcer, when compared to Mild To Moderate Localized Cellulitis (Cluster 1 produces classification efficiency from 71% to 88%), Moderate To Severe Cellulitis (Cluster 2 delivers classification efficiency from 85% to 97%), Moderate To Severe Cellulitis With Ischemia (Cluster 3 produces classification efficiency from 90% to 98%), and Life-Or Limb-Threatening Infection (Cluster 4), the results were promising (Cluster 4 makes classification efficiency from 93.5% to 98.2%). The efficiency of this is Cluster 78.45 percent higher than the existing procedure.</p><p><strong>Conclusions: </strong>The proposed Advanced Machine Learning Practical Method demonstrates significant improvements in DFU classification accuracy and efficiency, presenting a cost-effective and effective alternative to traditional diagnostic approaches.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329241296417"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241296417","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic foot ulcers (DFU) are a severe consequence of diabetes that, if left untreated, can lead to amputation, blindness, renal failure, and other serious complications. The high treatment expense and length of treatment for this therapeutic technique are both disadvantages. Despite the effectiveness of this strategy, a distant, cost-effective, and comfortable DFU diagnostic therapy is necessary.
Objective: This study proposed the Advanced Machine Learning Practical Method for Diabetic Foot Ulcer Classification.
Methods: This unique and cost-effective healthcare solution uses Practical Methodologies with the reinforcement learning algorithm for DFU imaging. The categorization was based on constant technological advancements, and the benefits of Machine Learning (ML) for use in DFU treatment are numerous, including enhanced clinical decision-making based on Ulcer classification and healing progress. The ML greatly impacted DFU data analysis, with categorization and risk assessment among the findings.
Results: The machine-learning technique can potentially create a paradigm shift by providing a 92.5% classification accuracy evaluation in the diabetic foot Ulcer problem. According to Clustering Scenario Analysis of Diabetic Foot Ulcer, when compared to Mild To Moderate Localized Cellulitis (Cluster 1 produces classification efficiency from 71% to 88%), Moderate To Severe Cellulitis (Cluster 2 delivers classification efficiency from 85% to 97%), Moderate To Severe Cellulitis With Ischemia (Cluster 3 produces classification efficiency from 90% to 98%), and Life-Or Limb-Threatening Infection (Cluster 4), the results were promising (Cluster 4 makes classification efficiency from 93.5% to 98.2%). The efficiency of this is Cluster 78.45 percent higher than the existing procedure.
Conclusions: The proposed Advanced Machine Learning Practical Method demonstrates significant improvements in DFU classification accuracy and efficiency, presenting a cost-effective and effective alternative to traditional diagnostic approaches.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).