Ying Dong, Peng Wang, Hua Geng, Yankun Liu, Enguo Wang
{"title":"Ultrasound and advanced imaging techniques in prostate cancer diagnosis: A comparative study of mpMRI, TRUS, and PET/CT.","authors":"Ying Dong, Peng Wang, Hua Geng, Yankun Liu, Enguo Wang","doi":"10.1177/08953996241304988","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to assess and compare the diagnostic performance of three advanced imaging modalities-multiparametric magnetic resonance imaging (mpMRI), transrectal ultrasound (TRUS), and positron emission tomography/computed tomography (PET/CT)-in detecting prostate cancer in patients with elevated PSA levels and abnormal DRE findings.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on 150 male patients aged 50-75 years with elevated PSA and abnormal DRE. The diagnostic accuracy of each modality was assessed through sensitivity, specificity, and the area under the curve (AUC) to compare performance in detecting clinically significant prostate cancer (Gleason score ≥ 7).</p><p><strong>Results: </strong>MpMRI demonstrated the highest diagnostic performance, with a sensitivity of 90%, specificity of 85%, and AUC of 0.92, outperforming both TRUS (sensitivity 76%, specificity 78%, AUC 0.77) and PET/CT (sensitivity 82%, specificity 80%, AUC 0.81). MpMRI detected clinically significant tumors in 80% of cases. Although TRUS and PET/CT had similar detection rates for significant tumors, their overall accuracy was lower. Minor adverse events occurred in 5% of patients undergoing TRUS, while no significant complications were associated with mpMRI or PET/CT.</p><p><strong>Conclusion: </strong>These findings suggest that mpMRI is the most reliable imaging modality for early detection of clinically significant prostate cancer. It reduces the need for unnecessary biopsies and optimizes patient management.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996241304988"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241304988","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aims to assess and compare the diagnostic performance of three advanced imaging modalities-multiparametric magnetic resonance imaging (mpMRI), transrectal ultrasound (TRUS), and positron emission tomography/computed tomography (PET/CT)-in detecting prostate cancer in patients with elevated PSA levels and abnormal DRE findings.
Methods: A retrospective analysis was conducted on 150 male patients aged 50-75 years with elevated PSA and abnormal DRE. The diagnostic accuracy of each modality was assessed through sensitivity, specificity, and the area under the curve (AUC) to compare performance in detecting clinically significant prostate cancer (Gleason score ≥ 7).
Results: MpMRI demonstrated the highest diagnostic performance, with a sensitivity of 90%, specificity of 85%, and AUC of 0.92, outperforming both TRUS (sensitivity 76%, specificity 78%, AUC 0.77) and PET/CT (sensitivity 82%, specificity 80%, AUC 0.81). MpMRI detected clinically significant tumors in 80% of cases. Although TRUS and PET/CT had similar detection rates for significant tumors, their overall accuracy was lower. Minor adverse events occurred in 5% of patients undergoing TRUS, while no significant complications were associated with mpMRI or PET/CT.
Conclusion: These findings suggest that mpMRI is the most reliable imaging modality for early detection of clinically significant prostate cancer. It reduces the need for unnecessary biopsies and optimizes patient management.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes