A multimodal similarity-aware and knowledge-driven pre-training approach for reliable pneumoconiosis diagnosis.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-13 DOI:10.1177/08953996241296400
Xueting Ren, Guohua Ji, Surong Chu, Shinichi Yoshida, Juanjuan Zhao, Baoping Jia, Yan Qiang
{"title":"A multimodal similarity-aware and knowledge-driven pre-training approach for reliable pneumoconiosis diagnosis.","authors":"Xueting Ren, Guohua Ji, Surong Chu, Shinichi Yoshida, Juanjuan Zhao, Baoping Jia, Yan Qiang","doi":"10.1177/08953996241296400","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pneumoconiosis staging is challenging due to the low clarity of X-ray images and the small, diffuse nature of the lesions. Additionally, the scarcity of annotated data makes it difficult to develop accurate staging models. Although clinical text reports provide valuable contextual information, existing works primarily focus on designing multimodal image-text contrastive learning tasks, neglecting the high similarity of pneumoconiosis imaging representations. This results in inadequate extraction of fine-grained multimodal information and underutilization of domain knowledge, limiting their application in medical tasks.</p><p><strong>Objective: </strong>The study aims to address the limitations of current multimodal methods by proposing a new approach that improves the precision of pneumoconiosis diagnosis and staging through enhanced fine-grained learning and better utilization of domain knowledge.</p><p><strong>Methods: </strong>The proposed <b>M</b>ultimodal <b>S</b>imilarity-aware and <b>K</b>nowledge-driven <b>P</b>re-<b>T</b>raining (MSK-PT) approach involves two stages. In the first stage, we deeply analyze the similar features of pneumoconiosis images and use a similarity-aware modality alignment strategy to explore the fine-grained representations and associated disturbances of pneumoconiosis lesions between images and texts, guiding the model to match more appropriate feature representations. In the second stage, we utilize data-associated features and pre-stored domain knowledge features as priors and constraints to guide the downstream model in the visual domain without annotations. To address potential erroneous labels generated by model predictions, we further introduce an uncertainty threshold strategy to mitigate the negative impact of imperfect prediction labels and enhance model interpretability.</p><p><strong>Results: </strong>We collected and created the pneumoconiosis chest X-ray (PneumoCXR) dataset to evaluate our proposed MSK-PT method. The experimental results show that our method achieved a classification accuracy of 81.73%, outperforming the state-of-the-art algorithms by 2.53%.</p><p><strong>Conclusions: </strong>MSK-PT showed diagnostic performance that matches or exceeds the average radiologist's level, even with limited labeled data, highlighting the method's effectiveness and robustness.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"229-248"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241296400","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pneumoconiosis staging is challenging due to the low clarity of X-ray images and the small, diffuse nature of the lesions. Additionally, the scarcity of annotated data makes it difficult to develop accurate staging models. Although clinical text reports provide valuable contextual information, existing works primarily focus on designing multimodal image-text contrastive learning tasks, neglecting the high similarity of pneumoconiosis imaging representations. This results in inadequate extraction of fine-grained multimodal information and underutilization of domain knowledge, limiting their application in medical tasks.

Objective: The study aims to address the limitations of current multimodal methods by proposing a new approach that improves the precision of pneumoconiosis diagnosis and staging through enhanced fine-grained learning and better utilization of domain knowledge.

Methods: The proposed Multimodal Similarity-aware and Knowledge-driven Pre-Training (MSK-PT) approach involves two stages. In the first stage, we deeply analyze the similar features of pneumoconiosis images and use a similarity-aware modality alignment strategy to explore the fine-grained representations and associated disturbances of pneumoconiosis lesions between images and texts, guiding the model to match more appropriate feature representations. In the second stage, we utilize data-associated features and pre-stored domain knowledge features as priors and constraints to guide the downstream model in the visual domain without annotations. To address potential erroneous labels generated by model predictions, we further introduce an uncertainty threshold strategy to mitigate the negative impact of imperfect prediction labels and enhance model interpretability.

Results: We collected and created the pneumoconiosis chest X-ray (PneumoCXR) dataset to evaluate our proposed MSK-PT method. The experimental results show that our method achieved a classification accuracy of 81.73%, outperforming the state-of-the-art algorithms by 2.53%.

Conclusions: MSK-PT showed diagnostic performance that matches or exceeds the average radiologist's level, even with limited labeled data, highlighting the method's effectiveness and robustness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network. KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction. Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models. A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture. A novel detail-enhanced wavelet domain feature compensation network for sparse-view X-ray computed laminography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1