An efficient and high-quality scheme for cone-beam CT reconstruction from sparse-view dat.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2025-02-04 DOI:10.1177/08953996241313121
Shunli Zhang, Mingxiu Tuo, Siyu Jin, Yikuan Gu
{"title":"An efficient and high-quality scheme for cone-beam CT reconstruction from sparse-view dat.","authors":"Shunli Zhang, Mingxiu Tuo, Siyu Jin, Yikuan Gu","doi":"10.1177/08953996241313121","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) is capable of generating detailed cross-sectional images of the scanned objects non-destructively. So far, CT has become an increasingly vital tool for 3D modelling of cultural relics. Compressed sensing (CS)-based CT reconstruction algorithms, such as the algebraic reconstruction technique (ART) regularized by total variation (TV), enable accurate reconstructions from sparse-view data, which consequently reduces both scanning time and costs. However, the implementation of the ART-TV is considerably slow, particularly in cone-beam reconstruction. In this paper, we propose an efficient and high-quality scheme for cone-beam CT reconstruction based on the traditional ART-TV algorithm. Our scheme employs Joseph's projection method for the computation of the system matrix. By exploiting the geometric symmetry of the cone-beam rays, we are able to compute the weight coefficients of the system matrix for two symmetric rays simultaneously. We then employ multi-threading technology to speed up the reconstruction of ART, and utilize graphics processing units (GPUs) to accelerate the TV minimization. Experimental results demonstrate that, for a typical reconstruction of a 512 × 512 × 512 volume from 60 views of 512 × 512 projection images, our scheme achieves a speedup of 14 × compared to a single-threaded CPU implementation. Furthermore, high-quality reconstructions of ART-TV are obtained by using Joseph's projection compared with that using traditional Siddon's projection.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996241313121"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241313121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Computed tomography (CT) is capable of generating detailed cross-sectional images of the scanned objects non-destructively. So far, CT has become an increasingly vital tool for 3D modelling of cultural relics. Compressed sensing (CS)-based CT reconstruction algorithms, such as the algebraic reconstruction technique (ART) regularized by total variation (TV), enable accurate reconstructions from sparse-view data, which consequently reduces both scanning time and costs. However, the implementation of the ART-TV is considerably slow, particularly in cone-beam reconstruction. In this paper, we propose an efficient and high-quality scheme for cone-beam CT reconstruction based on the traditional ART-TV algorithm. Our scheme employs Joseph's projection method for the computation of the system matrix. By exploiting the geometric symmetry of the cone-beam rays, we are able to compute the weight coefficients of the system matrix for two symmetric rays simultaneously. We then employ multi-threading technology to speed up the reconstruction of ART, and utilize graphics processing units (GPUs) to accelerate the TV minimization. Experimental results demonstrate that, for a typical reconstruction of a 512 × 512 × 512 volume from 60 views of 512 × 512 projection images, our scheme achieves a speedup of 14 × compared to a single-threaded CPU implementation. Furthermore, high-quality reconstructions of ART-TV are obtained by using Joseph's projection compared with that using traditional Siddon's projection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Feasibility exploration of myocardial blood flow synthesis from a simulated static myocardial computed tomography perfusion via a deep neural network. KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction. Comparative analysis of machine learning and deep learning algorithms for knee arthritis detection using YOLOv8 models. A deep learning detection method for pancreatic cystic neoplasm based on Mamba architecture. A novel detail-enhanced wavelet domain feature compensation network for sparse-view X-ray computed laminography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1