Primary Fixation and Cyclic Performance of Posterior Horn Medial Meniscus Root Repair With Knotless Adjustable Suture Anchor-Based Fixation: A Human Biomechanical Evaluation Over 100,000 Loading Cycles.

IF 4.2 1区 医学 Q1 ORTHOPEDICS American Journal of Sports Medicine Pub Date : 2025-02-19 DOI:10.1177/03635465251317210
Samuel Bachmaier, Aaron J Krych, Patrick A Smith, Clayton W Nuelle, Peter E Müller, Asheesh Bedi, Coen A Wijdicks
{"title":"Primary Fixation and Cyclic Performance of Posterior Horn Medial Meniscus Root Repair With Knotless Adjustable Suture Anchor-Based Fixation: A Human Biomechanical Evaluation Over 100,000 Loading Cycles.","authors":"Samuel Bachmaier, Aaron J Krych, Patrick A Smith, Clayton W Nuelle, Peter E Müller, Asheesh Bedi, Coen A Wijdicks","doi":"10.1177/03635465251317210","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent biomechanical evidence for adjustable suture anchor (ASA)-based posterior medial meniscus root (PMMR) fixation has shown promising results compared with conventional transtibial pull-out repair (TPOR). However, ASA fixation has not been evaluated in human tissue to 100,000 cycles.</p><p><strong>Hypothesis: </strong>ASA repair would lead to increased primary fixation strength and less cyclic displacement than conventional TPORs.</p><p><strong>Study design: </strong>Controlled laboratory study.</p><p><strong>Methods: </strong>A total of 32 human medial menisci were used, 8 of which were intact specimens and served as native controls. For the others, PMMR tears were created and repaired using 3 different techniques (n = 8 group). Two conventional PMMR repairs were prepared consisting of two No. 2 simple sutures (TSS) and two No. 2 sutures in a Mason-Allen (MA) configuration, all tied over a cortical button. The knotless ASA repair was fixed in MA with repair sutures tensioned at 120 N (MA-120). The repairs' initial force, stiffness, and relief displacement from the tensioned state toward repair unloading (2 N) were measured after fixation. All repair constructs were loaded for 100,000 cycles, with displacement and stiffness measured, and finally were pulled to failure.</p><p><strong>Results: </strong>The TPORs demonstrated similar primary fixation and cyclic loading behavior except for initial cyclic displacement (cycle 10). The ASA repair provided a higher initial repair load (<i>P</i> < .001) and stiffness (<i>P</i> < .001) with relief displacement similar to conventional TPORs. Lower initial cyclic displacement (<i>P</i> < .011; cycle 10) with overall higher repair stiffness (<i>P</i> < .011) resulted in significantly lower displacement (<i>P</i> < .001) throughout testing for ASA repair. Although both TPORs were completely loose after 100,000 cycles, the ASA repair achieved near-native dynamic meniscal stabilization. The TSS repair had lower overall ultimate load (<i>P</i> < .001) and ultimate stiffness (<i>P</i> < .023) compared with the ASA repair. All repairs had lower ultimate stiffness and loads than the native meniscus (<i>P</i> < .001).</p><p><strong>Conclusion: </strong>The ASA repair resulted in improved primary PMMR fixation that was stiffer with less cyclic displacement than conventional TPORs and approached that of the human meniscal function after 100,000 load cycles in a cadaveric model. However, all repair techniques had lower ultimate strength than the native human PMMR.</p><p><strong>Clinical relevance: </strong>Knotless ASA meniscus root fixation resulted in higher tissue compression and less displacement in a cadaveric model; however, future clinical series with surveillance imaging will define the overall significance of healing rates.</p>","PeriodicalId":55528,"journal":{"name":"American Journal of Sports Medicine","volume":" ","pages":"3635465251317210"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03635465251317210","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent biomechanical evidence for adjustable suture anchor (ASA)-based posterior medial meniscus root (PMMR) fixation has shown promising results compared with conventional transtibial pull-out repair (TPOR). However, ASA fixation has not been evaluated in human tissue to 100,000 cycles.

Hypothesis: ASA repair would lead to increased primary fixation strength and less cyclic displacement than conventional TPORs.

Study design: Controlled laboratory study.

Methods: A total of 32 human medial menisci were used, 8 of which were intact specimens and served as native controls. For the others, PMMR tears were created and repaired using 3 different techniques (n = 8 group). Two conventional PMMR repairs were prepared consisting of two No. 2 simple sutures (TSS) and two No. 2 sutures in a Mason-Allen (MA) configuration, all tied over a cortical button. The knotless ASA repair was fixed in MA with repair sutures tensioned at 120 N (MA-120). The repairs' initial force, stiffness, and relief displacement from the tensioned state toward repair unloading (2 N) were measured after fixation. All repair constructs were loaded for 100,000 cycles, with displacement and stiffness measured, and finally were pulled to failure.

Results: The TPORs demonstrated similar primary fixation and cyclic loading behavior except for initial cyclic displacement (cycle 10). The ASA repair provided a higher initial repair load (P < .001) and stiffness (P < .001) with relief displacement similar to conventional TPORs. Lower initial cyclic displacement (P < .011; cycle 10) with overall higher repair stiffness (P < .011) resulted in significantly lower displacement (P < .001) throughout testing for ASA repair. Although both TPORs were completely loose after 100,000 cycles, the ASA repair achieved near-native dynamic meniscal stabilization. The TSS repair had lower overall ultimate load (P < .001) and ultimate stiffness (P < .023) compared with the ASA repair. All repairs had lower ultimate stiffness and loads than the native meniscus (P < .001).

Conclusion: The ASA repair resulted in improved primary PMMR fixation that was stiffer with less cyclic displacement than conventional TPORs and approached that of the human meniscal function after 100,000 load cycles in a cadaveric model. However, all repair techniques had lower ultimate strength than the native human PMMR.

Clinical relevance: Knotless ASA meniscus root fixation resulted in higher tissue compression and less displacement in a cadaveric model; however, future clinical series with surveillance imaging will define the overall significance of healing rates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
12.50%
发文量
425
审稿时长
3 months
期刊介绍: An invaluable resource for the orthopaedic sports medicine community, _The American Journal of Sports Medicine_ is a peer-reviewed scientific journal, first published in 1972. It is the official publication of the [American Orthopaedic Society for Sports Medicine (AOSSM)](http://www.sportsmed.org/)! The journal acts as an important forum for independent orthopaedic sports medicine research and education, allowing clinical practitioners the ability to make decisions based on sound scientific information. This journal is a must-read for: * Orthopaedic Surgeons and Specialists * Sports Medicine Physicians * Physiatrists * Athletic Trainers * Team Physicians * And Physical Therapists
期刊最新文献
Defining the Minimal Clinically Important Improvement, Substantial Clinical Benefit, and Patient Acceptable Symptom State for the iHOT-12, HOOS, and HOOSglobal in the Nonoperative Management of Nonarthritic Hip-Related Pain. Radiographic Measurement of Anteriorization After Tibial Tubercle Osteotomy. Tendon Tissue Regeneration With Cell Orientation Using an Injectable Alginate-Cell Cross-linked Gel. Mechanisms of Action of Intra-articular Hyaluronic Acid Injections for Knee Osteoarthritis: A Targeted Review of the Literature. No Clinically Significant Differences in Patient-Reported Outcomes and Range of Motion Between Early and Delayed Mobilization After Primary Distal Biceps Tendon Repair: A Systematic Review and Meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1