Epileptogenic zone characteristics determine effectiveness of electrical transcranial stimulation in epilepsy treatment.

IF 4.1 Q1 CLINICAL NEUROLOGY Brain communications Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf012
Maëva Daoud, Samuel Medina-Villalon, Elodie Garnier, Ionuț-Flavius Bratu, Giada Damiani, Ricardo Salvador, Fabrice Wendling, Giulio Ruffini, Christian Bénar, Francesca Pizzo, Fabrice Bartolomei
{"title":"Epileptogenic zone characteristics determine effectiveness of electrical transcranial stimulation in epilepsy treatment.","authors":"Maëva Daoud, Samuel Medina-Villalon, Elodie Garnier, Ionuț-Flavius Bratu, Giada Damiani, Ricardo Salvador, Fabrice Wendling, Giulio Ruffini, Christian Bénar, Francesca Pizzo, Fabrice Bartolomei","doi":"10.1093/braincomms/fcaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial direct current stimulation shows promise as a non-invasive therapeutic method for patients with focal drug-resistant epilepsy. However, there is considerable variability in individual responses to transcranial direct current stimulation, and the factors influencing treatment effectiveness in targeted regions are not well understood. We aimed to assess how the extent and depth of the epileptogenic zone and associated networks impact patient responses to transcranial direct current stimulation therapy. We conducted a retrospective analysis of stereoelectroencephalography data from 23 patients participating in a personalized multichannel transcranial direct current stimulation protocol. We evaluated the extent and depth of the epileptogenic zone network, propagation zone network, and the combined network of the entire epileptogenic and propagation zones, correlating these factors with clinical response measured by the reduction in seizure frequency following repeated transcranial direct current stimulation sessions. Among the patients, 10 (43.5%) were classified as responders (R), experiencing a significant (>50%) decrease in seizure frequency, while 13 were non-responders, showing minimal improvement or increased seizure frequency. Importantly, we found a significant positive correlation between the extent of the epileptogenic zone network and changes in seizure frequency. A smaller epileptogenic zone network extent was associated with better transcranial direct current stimulation efficacy, with responders demonstrating a significantly smaller epileptogenic and propagation zones compared with non-responders. Additionally, non-responders tended to have a significantly deeper epileptogenic zone network compared with responders. Our results highlight the significant impact of the extent and depth of the epileptogenic zone network on transcranial direct current stimulation efficacy in patients with refractory focal epilepsy. Responders typically exhibited a smaller and shallower epileptogenic zone network compared with non-responders. These findings suggest that utilizing individualized epileptogenic zone network characteristics could help refine patient selection for personalized transcranial direct current stimulation protocols, potentially improving therapeutic outcomes.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf012"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial direct current stimulation shows promise as a non-invasive therapeutic method for patients with focal drug-resistant epilepsy. However, there is considerable variability in individual responses to transcranial direct current stimulation, and the factors influencing treatment effectiveness in targeted regions are not well understood. We aimed to assess how the extent and depth of the epileptogenic zone and associated networks impact patient responses to transcranial direct current stimulation therapy. We conducted a retrospective analysis of stereoelectroencephalography data from 23 patients participating in a personalized multichannel transcranial direct current stimulation protocol. We evaluated the extent and depth of the epileptogenic zone network, propagation zone network, and the combined network of the entire epileptogenic and propagation zones, correlating these factors with clinical response measured by the reduction in seizure frequency following repeated transcranial direct current stimulation sessions. Among the patients, 10 (43.5%) were classified as responders (R), experiencing a significant (>50%) decrease in seizure frequency, while 13 were non-responders, showing minimal improvement or increased seizure frequency. Importantly, we found a significant positive correlation between the extent of the epileptogenic zone network and changes in seizure frequency. A smaller epileptogenic zone network extent was associated with better transcranial direct current stimulation efficacy, with responders demonstrating a significantly smaller epileptogenic and propagation zones compared with non-responders. Additionally, non-responders tended to have a significantly deeper epileptogenic zone network compared with responders. Our results highlight the significant impact of the extent and depth of the epileptogenic zone network on transcranial direct current stimulation efficacy in patients with refractory focal epilepsy. Responders typically exhibited a smaller and shallower epileptogenic zone network compared with non-responders. These findings suggest that utilizing individualized epileptogenic zone network characteristics could help refine patient selection for personalized transcranial direct current stimulation protocols, potentially improving therapeutic outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
'Hyperbinding' in functional movement disorders: role of supplementary motor area efferent signalling. Response to: 'Hyperbinding' in functional movement disorders: role of supplementary motor area efferent signalling. Diffuse nuclear Overhauser effect MRI contrast changes detected in multiple sclerosis subjects at 7T. Glymphatic dysfunction exacerbates cognitive decline by triggering cortical degeneration in Parkinson's disease: evidence from diffusion-tensor MRI. The elusive relationship between retinal anatomy and brain amyloid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1