Spatiotemporal Patterns Differentiate Hippocampal Sharp-Wave Ripples from Interictal Epileptiform Discharges in Mice and Humans.

Anna Maslarova, Jiyun N Shin, Andrea Navas-Olive, Mihály Vöröslakos, Hajo Hamer, Arnd Doerfler, Simon Henin, György Buzsáki, Anli Liu
{"title":"Spatiotemporal Patterns Differentiate Hippocampal Sharp-Wave Ripples from Interictal Epileptiform Discharges in Mice and Humans.","authors":"Anna Maslarova, Jiyun N Shin, Andrea Navas-Olive, Mihály Vöröslakos, Hajo Hamer, Arnd Doerfler, Simon Henin, György Buzsáki, Anli Liu","doi":"10.1101/2025.02.06.636758","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal sharp-wave ripples (SPW-Rs) are high-frequency oscillations critical for memory consolidation in mammals. Despite extensive characterization in rodents, their application as biomarkers to track and treat memory dysfunction in humans is limited by coarse spatial sampling, interference from interictal epileptiform discharges (IEDs), and lack of consensus on human SPW-R localization and morphology. We demonstrate that mouse and human hippocampal ripples share spatial, spectral and temporal features, which are clearly distinct from IEDs. In 1024-channel hippocampal recordings from APP/PS1 mice, SPW-Rs were distinguishable from IEDs by their narrow localization to the CA1 pyramidal layer, narrowband frequency peaks, and multiple ripple cycles on the unfiltered local field potential. In epilepsy patients, ripples showed similar narrowband frequency peaks and visible ripple cycles in CA1 and the subiculum but were absent in the dentate gyrus. Conversely, IEDs showed a broad spatial extent and wide-band frequency power. We introduce a semi-automated, human ripple detection toolbox (\"ripmap\") selecting optimal detection channels and separating event waveforms by low-dimensional embedding. Our approach improves ripple detection accuracy, providing a firm foundation for future human memory research.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.06.636758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hippocampal sharp-wave ripples (SPW-Rs) are high-frequency oscillations critical for memory consolidation in mammals. Despite extensive characterization in rodents, their application as biomarkers to track and treat memory dysfunction in humans is limited by coarse spatial sampling, interference from interictal epileptiform discharges (IEDs), and lack of consensus on human SPW-R localization and morphology. We demonstrate that mouse and human hippocampal ripples share spatial, spectral and temporal features, which are clearly distinct from IEDs. In 1024-channel hippocampal recordings from APP/PS1 mice, SPW-Rs were distinguishable from IEDs by their narrow localization to the CA1 pyramidal layer, narrowband frequency peaks, and multiple ripple cycles on the unfiltered local field potential. In epilepsy patients, ripples showed similar narrowband frequency peaks and visible ripple cycles in CA1 and the subiculum but were absent in the dentate gyrus. Conversely, IEDs showed a broad spatial extent and wide-band frequency power. We introduce a semi-automated, human ripple detection toolbox ("ripmap") selecting optimal detection channels and separating event waveforms by low-dimensional embedding. Our approach improves ripple detection accuracy, providing a firm foundation for future human memory research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1