Selene Fiori, Christoph Bruckschlegel, Katharina Weiss, Keyu Su, Michael Foedlmeier, Flavio Della Pelle, Annalisa Scroccarello, Dario Compagnone, Antje J. Baeumner, Nongnoot Wongkaew
{"title":"Laser-Induced Carbon Nanofibers as Permeable Nonenzymatic Sensor for Biomarker Detection in Breath Aerosol","authors":"Selene Fiori, Christoph Bruckschlegel, Katharina Weiss, Keyu Su, Michael Foedlmeier, Flavio Della Pelle, Annalisa Scroccarello, Dario Compagnone, Antje J. Baeumner, Nongnoot Wongkaew","doi":"10.1021/acs.analchem.4c06580","DOIUrl":null,"url":null,"abstract":"A novel breathable electrochemical enzyme-free sensor made from laser-induced carbon nanofibers embedding Ni nanocatalysts (Ni-LCNFs) is proposed for the capture and detection of biomarkers in breath aerosol. The permeable Ni-LCNF electrodes were fabricated on filter paper where a hydrophobic wax barrier was created to confine the device’s working area. The device was tested with aerosolized glucose, which was collected on the porous Ni-LCNF electrode. After a subsequent drying step, 0.1 M NaOH was dropped onto the device, and the electrocatalytic reaction of the captured glucose enabled by a Ni nanocatalyst was monitored via cyclic voltammetry (CV). Taking the oxidation/reduction peak ratios from CV as analytical signals improves the reliability and reproducibility of the glucose measurement. In the measurement step, closing the sensing area with adhesive tape, named <i>closed device</i>, enhances the detection sensitivity and enables the detection limit of 0.71 μM, which is 11.5 and 50 times, respectively, better when compared to the <i>open device</i> configuration. Measurements with simulated glucose aerosols containing clinically relevant glucose levels and comparison to screen-printed electrodes demonstrated the device’s superiority for breath analysis. Although <i>in vivo</i> validation studies must be conducted in future work, the proposed device results in a captivating point-of-care device integratable in breathing masks and breath analysis devices.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"31 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06580","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel breathable electrochemical enzyme-free sensor made from laser-induced carbon nanofibers embedding Ni nanocatalysts (Ni-LCNFs) is proposed for the capture and detection of biomarkers in breath aerosol. The permeable Ni-LCNF electrodes were fabricated on filter paper where a hydrophobic wax barrier was created to confine the device’s working area. The device was tested with aerosolized glucose, which was collected on the porous Ni-LCNF electrode. After a subsequent drying step, 0.1 M NaOH was dropped onto the device, and the electrocatalytic reaction of the captured glucose enabled by a Ni nanocatalyst was monitored via cyclic voltammetry (CV). Taking the oxidation/reduction peak ratios from CV as analytical signals improves the reliability and reproducibility of the glucose measurement. In the measurement step, closing the sensing area with adhesive tape, named closed device, enhances the detection sensitivity and enables the detection limit of 0.71 μM, which is 11.5 and 50 times, respectively, better when compared to the open device configuration. Measurements with simulated glucose aerosols containing clinically relevant glucose levels and comparison to screen-printed electrodes demonstrated the device’s superiority for breath analysis. Although in vivo validation studies must be conducted in future work, the proposed device results in a captivating point-of-care device integratable in breathing masks and breath analysis devices.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.