{"title":"Image Matting and 3D Reconstruction in One Loop","authors":"Xinshuang Liu, Siqi Li, Yue Gao","doi":"10.1007/s11263-024-02341-y","DOIUrl":null,"url":null,"abstract":"<p>Recent 3D object reconstruction methods rely on user-input alpha mattes to remove the background and reconstruct the object, because automatically predicted alpha mattes are not accurate enough. To realize automatic 3D object reconstruction, we propose a <u>Joint</u> framework for image <u>M</u>atting and 3D object <u>R</u>econstruction (JointMR). It iteratively integrates information from all images into object hint maps to help image matting models predict better alpha mattes for each image and, in turn, improves 3D object reconstruction performance. The convergence of our framework is theoretically guaranteed. We further propose a method to convert an arbitrary image matting model into its hint-based counterpart. We conduct experiments on 3D object reconstruction from multi-view images and 3D dynamic object reconstruction from monocular videos. Different combinations of 3D object reconstruction models and image matting models are also tested. Experimental results show that our framework only slightly increases the computation cost but significantly improves the performance of all model combinations, demonstrating its compatibility and efficiency. Our code, models, and data are available at https://github.com/XinshuangL/JointMR.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"50 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02341-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent 3D object reconstruction methods rely on user-input alpha mattes to remove the background and reconstruct the object, because automatically predicted alpha mattes are not accurate enough. To realize automatic 3D object reconstruction, we propose a Joint framework for image Matting and 3D object Reconstruction (JointMR). It iteratively integrates information from all images into object hint maps to help image matting models predict better alpha mattes for each image and, in turn, improves 3D object reconstruction performance. The convergence of our framework is theoretically guaranteed. We further propose a method to convert an arbitrary image matting model into its hint-based counterpart. We conduct experiments on 3D object reconstruction from multi-view images and 3D dynamic object reconstruction from monocular videos. Different combinations of 3D object reconstruction models and image matting models are also tested. Experimental results show that our framework only slightly increases the computation cost but significantly improves the performance of all model combinations, demonstrating its compatibility and efficiency. Our code, models, and data are available at https://github.com/XinshuangL/JointMR.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.