Accelerating crystal structure search through active learning with neural networks for rapid relaxations

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-02-20 DOI:10.1038/s41524-025-01523-7
Stefaan S. P. Hessmann, Kristof T. Schütt, Niklas W. A. Gebauer, Michael Gastegger, Tamio Oguchi, Tomoki Yamashita
{"title":"Accelerating crystal structure search through active learning with neural networks for rapid relaxations","authors":"Stefaan S. P. Hessmann, Kristof T. Schütt, Niklas W. A. Gebauer, Michael Gastegger, Tamio Oguchi, Tomoki Yamashita","doi":"10.1038/s41524-025-01523-7","DOIUrl":null,"url":null,"abstract":"<p>Global optimization of crystal compositions is a significant yet computationally intensive method to identify stable structures within chemical space. The specific physical properties linked to a three-dimensional atomic arrangement make this an essential task in the development of new materials. We present a method that efficiently uses active learning of neural network force fields for structure relaxation, minimizing the required number of steps in the process. This is achieved by neural network force fields equipped with uncertainty estimation, which iteratively guide a pool of randomly generated candidates toward their respective local minima. Using this approach, we are able to effectively identify the most promising candidates for further evaluation using density functional theory (DFT). Our method not only reliably reduces computational costs by up to two orders of magnitude across the benchmark systems Si<sub>16</sub>, Na<sub>8</sub>Cl<sub>8</sub>, Ga<sub>8</sub>As<sub>8</sub> and Al<sub>4</sub>O<sub>6</sub> but also excels in finding the most stable minimum for the unseen, more complex systems Si<sub>46</sub> and Al<sub>16</sub>O<sub>24</sub>. Moreover, we demonstrate at the example of Si<sub>16</sub> that our method can find multiple relevant local minima while only adding minor computational effort.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01523-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Global optimization of crystal compositions is a significant yet computationally intensive method to identify stable structures within chemical space. The specific physical properties linked to a three-dimensional atomic arrangement make this an essential task in the development of new materials. We present a method that efficiently uses active learning of neural network force fields for structure relaxation, minimizing the required number of steps in the process. This is achieved by neural network force fields equipped with uncertainty estimation, which iteratively guide a pool of randomly generated candidates toward their respective local minima. Using this approach, we are able to effectively identify the most promising candidates for further evaluation using density functional theory (DFT). Our method not only reliably reduces computational costs by up to two orders of magnitude across the benchmark systems Si16, Na8Cl8, Ga8As8 and Al4O6 but also excels in finding the most stable minimum for the unseen, more complex systems Si46 and Al16O24. Moreover, we demonstrate at the example of Si16 that our method can find multiple relevant local minima while only adding minor computational effort.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Ferroelectricity at the extreme thickness limit in the archetypal antiferroelectric PbZrO3 Efficient GPU-computing simulation platform JAX-CPFEM for differentiable crystal plasticity finite element method First principles calculations of carrier dynamics of screw dislocation A physics-enforced neural network to predict polymer melt viscosity The interplay between the martensitic transformation rate and the rate of plastic relaxation during martensitic transformation in low-carbon steel, a phase-field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1