{"title":"The parsley genome assembly and DNA methylome shed light on apigenin biosynthesis in the Apiaceae","authors":"Hui Liu, Jia-Qi Zhang, Chen Chen, Ya-Hui Wang, Zhi-Sheng Xu, Qin-Zheng Zhao, Jian Zhang, Jia-Yu Xue, Ai-Sheng Xiong","doi":"10.1093/plphys/kiaf077","DOIUrl":null,"url":null,"abstract":"Parsley (Petroselinum crispum (Mill.)) is a medicinal and edible vegetable of the Apiaceae family that is rich in apigenin. The Apiaceae family is well known for its diverse secondary metabolites. As a high-quality reference genome is lacking for parsley, the evolution and apigenin biosynthesis in Apiaceae have remained unexplored. Here, we report the chromosome-level genome sequence of parsley, consisting of 1.85 Gb that mainly arose from the expansion of long terminal repeats. Whole-genome bisulfite sequencing (WGBS) revealed a significantly higher number of hypermethylated differentially expressed genes (hyper-DMGs) in leaf blades and petioles than in root tissues. Moreover, we identified and characterized chalcone isomerase (CHI) genes, encoding key enzymes involved in apigenin biosynthesis in parsley. We also established that the APETALA2 family transcription factor Pcrispum_6.2855 (PcAP2) binds to the (Pcrispum_11.4764) PcCHI promoter and promotes apigenin accumulation. In conclusion, our work presents a multi-omics data resource for understanding apigenin biosynthesis and its transcriptional regulation in parsley, in addition to shedding light on the evolution of parsley within the Apiaceae.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"25 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parsley (Petroselinum crispum (Mill.)) is a medicinal and edible vegetable of the Apiaceae family that is rich in apigenin. The Apiaceae family is well known for its diverse secondary metabolites. As a high-quality reference genome is lacking for parsley, the evolution and apigenin biosynthesis in Apiaceae have remained unexplored. Here, we report the chromosome-level genome sequence of parsley, consisting of 1.85 Gb that mainly arose from the expansion of long terminal repeats. Whole-genome bisulfite sequencing (WGBS) revealed a significantly higher number of hypermethylated differentially expressed genes (hyper-DMGs) in leaf blades and petioles than in root tissues. Moreover, we identified and characterized chalcone isomerase (CHI) genes, encoding key enzymes involved in apigenin biosynthesis in parsley. We also established that the APETALA2 family transcription factor Pcrispum_6.2855 (PcAP2) binds to the (Pcrispum_11.4764) PcCHI promoter and promotes apigenin accumulation. In conclusion, our work presents a multi-omics data resource for understanding apigenin biosynthesis and its transcriptional regulation in parsley, in addition to shedding light on the evolution of parsley within the Apiaceae.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.