{"title":"Construction of Dual Active-Site NH2-MIL-125(Ti) for Efficient Selective Oxidation of Cyclohexylamine to Cyclohexanone Oxime","authors":"Wenjin Ni, Xiang Liu, Qian Yang, Zhongliang Li, Jinfeng Fu, Liang Tan, Jiaming Zhang, Jian Liu","doi":"10.1021/acs.langmuir.4c04786","DOIUrl":null,"url":null,"abstract":"In this work, dual active-site Ti-incorporated metal–organic frameworks (MIL-125 and NH<sub>2</sub>-MIL-125) were synthesized by a simple solvothermal process and applied to prepare cyclohexanone oxime from cyclohexylamine oxidation. A low-temperature thermal calcination strategy was used for the modulation of surface properties while maintaining the crystal structure and morphology. The results demonstrated that novel bifunctional NH<sub>2</sub>-MIL-125@250 °C obtained from thermal calcination possessed a large surface area with both oxygen vacancies and surface hydroxyl-active sites, promoting the adsorption and activation of cyclohexylamine and oxygen molecules, respectively. Under the optimum conditions, the cyclohexylamine conversion was 44.3%, and the selectivity to cyclohexanone oxime was 83.0%. By comparison, the stability of MIL-125 and NH<sub>2</sub>-MIL-125 was investigated separately in cyclic tests, and the crystal structure and catalytic properties of NH<sub>2</sub>-MIL-125 have been shown to be more stable than those of MIL-125. Combined with density functional theory, it was further shown that NH<sub>2</sub>-MIL-125 displayed a higher adsorption and activation ability toward cyclohexylamine and oxygen than MIL-125 and had a more stable metal–organic ligand structure. Finally, a plausible reaction pathway for selective cyclohexylamine oxidation to cyclohexanone oxime was proposed. This work can give new insights into designing novel dual active-site catalysts for the efficient catalytic transformation of organic primary amines to corresponding oximes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04786","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, dual active-site Ti-incorporated metal–organic frameworks (MIL-125 and NH2-MIL-125) were synthesized by a simple solvothermal process and applied to prepare cyclohexanone oxime from cyclohexylamine oxidation. A low-temperature thermal calcination strategy was used for the modulation of surface properties while maintaining the crystal structure and morphology. The results demonstrated that novel bifunctional NH2-MIL-125@250 °C obtained from thermal calcination possessed a large surface area with both oxygen vacancies and surface hydroxyl-active sites, promoting the adsorption and activation of cyclohexylamine and oxygen molecules, respectively. Under the optimum conditions, the cyclohexylamine conversion was 44.3%, and the selectivity to cyclohexanone oxime was 83.0%. By comparison, the stability of MIL-125 and NH2-MIL-125 was investigated separately in cyclic tests, and the crystal structure and catalytic properties of NH2-MIL-125 have been shown to be more stable than those of MIL-125. Combined with density functional theory, it was further shown that NH2-MIL-125 displayed a higher adsorption and activation ability toward cyclohexylamine and oxygen than MIL-125 and had a more stable metal–organic ligand structure. Finally, a plausible reaction pathway for selective cyclohexylamine oxidation to cyclohexanone oxime was proposed. This work can give new insights into designing novel dual active-site catalysts for the efficient catalytic transformation of organic primary amines to corresponding oximes.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).