Removal of Antibiotic Resistance from Wastewater in Aquatic Ecosystems Dominated by Submerged Macrophytes

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-02-21 DOI:10.1016/j.jhazmat.2025.137706
Rong-min Zhang, Xiao-jie Chen, Ya-fei Li, Hui-zhen Tan, Wen-qing Huang, Ling-lin Li, Xin-ting Li, Jie Xie, Yun-xiao Chong, Xin-lei Lian, Xian-hui Huang
{"title":"Removal of Antibiotic Resistance from Wastewater in Aquatic Ecosystems Dominated by Submerged Macrophytes","authors":"Rong-min Zhang, Xiao-jie Chen, Ya-fei Li, Hui-zhen Tan, Wen-qing Huang, Ling-lin Li, Xin-ting Li, Jie Xie, Yun-xiao Chong, Xin-lei Lian, Xian-hui Huang","doi":"10.1016/j.jhazmat.2025.137706","DOIUrl":null,"url":null,"abstract":"Submerged macrophytes in constructed wetlands (CWs) can effectively improve wastewater quality. However, the effectiveness of different submerged macrophytes in removing antibiotic-resistant genes (ARGs) from wastewater remains unexplored. Additionally, wastewater loading in wetlands can fluctuate due to climate change, potentially affecting ARG removal efficiency. In this study, we systematically constructed microscale wetlands using three submerged plants: <em>Vallisneria natans</em> (<em>VN</em>), <em>Sagittaria pygmaea</em> (<em>SP</em>), and <em>Myriophyllum spicatum</em> (<em>MS</em>). Their effectiveness in ARGs removal was analyzed at hydraulic retention times (HRTs) of 0, 3, 6, and 9 days under high (HWL) and low (LWL) wastewater loading. The results indicated that under LWL conditions, all ecosystems exhibited a higher reduction rate of ARG diversity and relative abundance (RS) compared to HWL conditions. The efficiency of all ecosystems in reducing ARG diversity and abundance followed the order: <em>MS</em> &gt; <em>VN</em> &gt; <em>SP</em>. The <em>sul</em> resistance gene exhibited the highest RS and was degraded most rapidly in all samples. Additionally, sulfadimidine concentrations significantly decreased under LWL conditions, which was significantly correlated with <em>sul</em> reduction. Chemical oxygen demand, total phosphorus, total nitrogen, ammonium nitrogen, and nitrate nitrogen were identified as key factors influencing bacterial and ARG profiles. The increase in rhizobial bacteria and decrease in aerobic denitrifying bacteria likely contributed significantly to ARGs removal. This study offers new insights into ARG removal by submerged macrophytes in CWs, emphasizing the role of wastewater loading and the potential of <em>MS</em> in enhancing ARG degradation. These findings enhance CW design and management to mitigate ARG contamination in wastewater.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"7 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137706","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Submerged macrophytes in constructed wetlands (CWs) can effectively improve wastewater quality. However, the effectiveness of different submerged macrophytes in removing antibiotic-resistant genes (ARGs) from wastewater remains unexplored. Additionally, wastewater loading in wetlands can fluctuate due to climate change, potentially affecting ARG removal efficiency. In this study, we systematically constructed microscale wetlands using three submerged plants: Vallisneria natans (VN), Sagittaria pygmaea (SP), and Myriophyllum spicatum (MS). Their effectiveness in ARGs removal was analyzed at hydraulic retention times (HRTs) of 0, 3, 6, and 9 days under high (HWL) and low (LWL) wastewater loading. The results indicated that under LWL conditions, all ecosystems exhibited a higher reduction rate of ARG diversity and relative abundance (RS) compared to HWL conditions. The efficiency of all ecosystems in reducing ARG diversity and abundance followed the order: MS > VN > SP. The sul resistance gene exhibited the highest RS and was degraded most rapidly in all samples. Additionally, sulfadimidine concentrations significantly decreased under LWL conditions, which was significantly correlated with sul reduction. Chemical oxygen demand, total phosphorus, total nitrogen, ammonium nitrogen, and nitrate nitrogen were identified as key factors influencing bacterial and ARG profiles. The increase in rhizobial bacteria and decrease in aerobic denitrifying bacteria likely contributed significantly to ARGs removal. This study offers new insights into ARG removal by submerged macrophytes in CWs, emphasizing the role of wastewater loading and the potential of MS in enhancing ARG degradation. These findings enhance CW design and management to mitigate ARG contamination in wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Removal of nickel ions from industrial wastewater using tms-EDTA-functionalized Ti3C2Tx: Experimental and statistical physics modeling Development of a deep neural network model based on high throughput screening data for predicting synergistic estrogenic activity of binary mixtures for consumer products Fe-doped TiO2 nanosheet exposure accelerates the spread of antibiotic resistance genes by promoting plasmid-mediated conjugative transfer Direct photodegradation of aromatic carbamate pesticides: Kinetics and mechanisms in aqueous vs. non-aqueous media Variable dual C-Cl isotope slopes of trichloromethane transformation by alkaline-activated persulfate under different simulated field conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1