Fed-GWAS: Privacy-preserving individualized incentive-based cross-device federated GWAS learning

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information Security and Applications Pub Date : 2025-02-22 DOI:10.1016/j.jisa.2025.104002
Omid Torki , Maede Ashouri-Talouki , Mina Alishahi
{"title":"Fed-GWAS: Privacy-preserving individualized incentive-based cross-device federated GWAS learning","authors":"Omid Torki ,&nbsp;Maede Ashouri-Talouki ,&nbsp;Mina Alishahi","doi":"10.1016/j.jisa.2025.104002","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread availability of DNA sequencing technology has led to the genetic sequences of individuals becoming accessible data, creating opportunities to identify the genetic factors underlying various diseases. In particular, Genome-Wide Association Studies (GWAS) seek to identify Single Nucleotide Polymorphism (SNPs) associated with a specific phenotype. Although sharing such data offers valuable insights, it poses a significant challenge due to both privacy concerns and the large size of the data involved. To address these challenges, in this paper, we propose a novel framework that combines both federated learning and blockchain as a platform for conducting GWAS studies with the participation of single individuals. The proposed framework offers a mutually beneficial solution where individuals participating in the GWAS study receive insurance credit to avail medical services while research and treatment centers benefit from the study data. To safeguard model parameters and prevent inference attacks, a secure aggregation protocol has been developed. The evaluation results demonstrate the scalability and efficiency of the proposed framework in terms of runtime and communication, outperforming existing solutions.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 104002"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000407","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread availability of DNA sequencing technology has led to the genetic sequences of individuals becoming accessible data, creating opportunities to identify the genetic factors underlying various diseases. In particular, Genome-Wide Association Studies (GWAS) seek to identify Single Nucleotide Polymorphism (SNPs) associated with a specific phenotype. Although sharing such data offers valuable insights, it poses a significant challenge due to both privacy concerns and the large size of the data involved. To address these challenges, in this paper, we propose a novel framework that combines both federated learning and blockchain as a platform for conducting GWAS studies with the participation of single individuals. The proposed framework offers a mutually beneficial solution where individuals participating in the GWAS study receive insurance credit to avail medical services while research and treatment centers benefit from the study data. To safeguard model parameters and prevent inference attacks, a secure aggregation protocol has been developed. The evaluation results demonstrate the scalability and efficiency of the proposed framework in terms of runtime and communication, outperforming existing solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Security and Applications
Journal of Information Security and Applications Computer Science-Computer Networks and Communications
CiteScore
10.90
自引率
5.40%
发文量
206
审稿时长
56 days
期刊介绍: Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.
期刊最新文献
Fed-GWAS: Privacy-preserving individualized incentive-based cross-device federated GWAS learning Novel improvements and extensions of the extractable results about (leakage-resilient) privacy schemes with imperfect randomness Advanced octree-based reversible data hiding in encrypted point clouds Equipment failure data trends focused privacy preserving scheme for Machine-as-a-Service Reversible data hiding in Redundancy-Free cipher images through pixel rotation and multi-MSB replacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1