Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES Scientific African Pub Date : 2025-02-18 DOI:10.1016/j.sciaf.2025.e02586
Hajar Ahessab, Ahmed Gaga, Benachir EL Hadadi
{"title":"Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions","authors":"Hajar Ahessab,&nbsp;Ahmed Gaga,&nbsp;Benachir EL Hadadi","doi":"10.1016/j.sciaf.2025.e02586","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an Enhanced Grey Wolf Optimizer (E-GWO) algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems under partial shading conditions. The proposed E-GWO introduces a novel parameter minimization strategy for the convergence factor <span><math><mi>ω</mi></math></span>, enabling rapid and precise tracking of the global maximum power point (GMPP) without overshoot. Key improvements to the standard GWO framework enhance tracking accuracy, stability, and overall system performance.</div><div>The proposed MPPT approach is validated through extensive simulations and real-world experiments implemented on a dual-core DSP LAUNCHXL-F28379D using MATLAB/Simulink. Experimental results demonstrate that E-GWO reduces tracking time by up to 99.90% compared to traditional GWO methods while increasing dynamic tracking efficiency by over 9%. Furthermore, the E-GWO consistently outperforms conventional GWO variants and other swarm-based algorithms, ensuring superior power output in diverse shading scenarios.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02586"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an Enhanced Grey Wolf Optimizer (E-GWO) algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems under partial shading conditions. The proposed E-GWO introduces a novel parameter minimization strategy for the convergence factor ω, enabling rapid and precise tracking of the global maximum power point (GMPP) without overshoot. Key improvements to the standard GWO framework enhance tracking accuracy, stability, and overall system performance.
The proposed MPPT approach is validated through extensive simulations and real-world experiments implemented on a dual-core DSP LAUNCHXL-F28379D using MATLAB/Simulink. Experimental results demonstrate that E-GWO reduces tracking time by up to 99.90% compared to traditional GWO methods while increasing dynamic tracking efficiency by over 9%. Furthermore, the E-GWO consistently outperforms conventional GWO variants and other swarm-based algorithms, ensuring superior power output in diverse shading scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
期刊最新文献
A systematic review and meta-analysis on the prevalence and associated factors, bacterial profiles, and antibiotic susceptibility of subclinical mastitis in dairy cattle in Uganda In vitro cytotoxicity and secondary metabolites of Talaromyces wortmannii isolated from Arundo donax L.: Identification of a new phytoceramide Revolutionizing photovoltaic power: An enhanced Grey Wolf Optimizer for ultra-efficient MPPT under partial shading conditions Chloride induced corrosion behaviour of mild steel rebars: A case study of calcined Clay Pozzolan containing concrete Enhancing precision in evapotranspiration estimation: AI-powered downscaling of VIIRS LST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1