Cortical activation and functional connectivity in visual-cognitive-motor networks during motor-cognitive exercise

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES Behavioural Brain Research Pub Date : 2025-02-20 DOI:10.1016/j.bbr.2025.115491
Thorben Hülsdünker , Maxime Laporte , Andreas Mierau , Daniel Büchel
{"title":"Cortical activation and functional connectivity in visual-cognitive-motor networks during motor-cognitive exercise","authors":"Thorben Hülsdünker ,&nbsp;Maxime Laporte ,&nbsp;Andreas Mierau ,&nbsp;Daniel Büchel","doi":"10.1016/j.bbr.2025.115491","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>When compared to computer-based brain training, motor-cognitive exercises and exergaming claim to provide stronger brain activation and better transfer due to the integration of a more complex motor task. To evaluate if this is supported by neural dynamics, this study compared event-related potentials and connectivity between a cognitive and motor-cognitive training task.</div></div><div><h3>Methods</h3><div>21 participants performed a choice-reaction task with either an upper extremity button press (cognitive condition) or lower extremity stepping movement (motor-cognitive condition) input using the SKILLCOURT technology. The visual stimulation and cognitive task were identical. In addition to reaction time, neural activity was recorded using a 64-channel EEG system. Time course of neural activation and event-related potential data in visual premotor, primary motor and sensory regions of interest were compared between conditions. In addition, connectivity was calculated to identify differences in functional communication.</div></div><div><h3>Results</h3><div>Neural engagement was stronger in the motor-cognitive condition as reflected by a higher amplitude (p &lt; 0.001) and longer latency (p = 0.02) of the BA6 negativity potential as well as higher activity in electrodes representing the foot region of the primary motor cortex (p &lt; 0.001). This was accompanied by enhanced connectivity between electrodes covering the premotor cortex and frontal, primary motor and visual areas p &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>The findings suggest that the premotor cortex plays a key role in motor-cognitive training. This supports the assumption of stronger engagement of motor areas in motor-cognitive when compared to cognitive training and shed light on the neural processes that may underly superior training effects when compared to computer-based cognitive training.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"484 ","pages":"Article 115491"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825000774","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

When compared to computer-based brain training, motor-cognitive exercises and exergaming claim to provide stronger brain activation and better transfer due to the integration of a more complex motor task. To evaluate if this is supported by neural dynamics, this study compared event-related potentials and connectivity between a cognitive and motor-cognitive training task.

Methods

21 participants performed a choice-reaction task with either an upper extremity button press (cognitive condition) or lower extremity stepping movement (motor-cognitive condition) input using the SKILLCOURT technology. The visual stimulation and cognitive task were identical. In addition to reaction time, neural activity was recorded using a 64-channel EEG system. Time course of neural activation and event-related potential data in visual premotor, primary motor and sensory regions of interest were compared between conditions. In addition, connectivity was calculated to identify differences in functional communication.

Results

Neural engagement was stronger in the motor-cognitive condition as reflected by a higher amplitude (p < 0.001) and longer latency (p = 0.02) of the BA6 negativity potential as well as higher activity in electrodes representing the foot region of the primary motor cortex (p < 0.001). This was accompanied by enhanced connectivity between electrodes covering the premotor cortex and frontal, primary motor and visual areas p < 0.05).

Conclusion

The findings suggest that the premotor cortex plays a key role in motor-cognitive training. This supports the assumption of stronger engagement of motor areas in motor-cognitive when compared to cognitive training and shed light on the neural processes that may underly superior training effects when compared to computer-based cognitive training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
期刊最新文献
Muscarinic cholinergic system of the dorsal hippocampus involvement in the modulation of formalin-induced orofacial nociception and relevant memory impairment in rats Identification of Prolyl endopeptidase as a novel anti-depression target of Genipin-1-b-D-gentiobioside in brain tissues CRMP2 in the hippocampus alleviates chronic stress-induced depressive-like behaviours in mice by affecting synaptic function Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease The study on effects of acute exposure to high altitude hypoxia on cognitive function in lowlander
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1