Energy efficiency enhancement of ethanol electrooxidation based on zinc molybdate nanostructures in direct fuel cells

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2025-02-01 DOI:10.1016/j.sbsr.2025.100769
Asma Khoobi
{"title":"Energy efficiency enhancement of ethanol electrooxidation based on zinc molybdate nanostructures in direct fuel cells","authors":"Asma Khoobi","doi":"10.1016/j.sbsr.2025.100769","DOIUrl":null,"url":null,"abstract":"<div><div>Today, environmental pollution and energy shortages have become two main crisis for future of the world. Also, the synthesis of novel nanostructures by sonochemical methods is a promising option because of their non-toxicity and environmental friendliness. In the present study, a sonochemical method was used to synthesis novel zinc molybdate nanopowders with different precursors. The synthesis of the nanostructures was performed using sodium zinc molybdate and different salts of zinc such as zinc nitrate, zinc acetate, and zinc sulfate, as a precursor. Also, the effect of instrumental factors containing sonication power and time irradiation was optimized by the sonochemical method for synthesis of the nanostructures. The characterization of the products was accomplished by various techniques containing field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). The results showed zinc nitrate precursor can be produce homogeneous nanostructures in optimized conditions. Therefore, the nano-structured zinc molybdate compound was applied for modification of a carbon paste electrode (CPE). The oxidation reaction of ethanol was selected for investigation of the electrocatalytic performance of the nano-structured modified electrode. Cyclic voltammetry (CV) and chronoamperometry were applied for the electrochemical characterization as well as stability and repeatability studies. The nano-structured modified electrode showed an improved catalytic performance for the oxidation of ethanol than the CPE. Therefore, the nanostructures can show potential applications or directions for future work. The potential applications of the modified electrode in fuel cells, sensors, and energy storage fields can be considered and also suggest areas for further research.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"47 ","pages":"Article 100769"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Today, environmental pollution and energy shortages have become two main crisis for future of the world. Also, the synthesis of novel nanostructures by sonochemical methods is a promising option because of their non-toxicity and environmental friendliness. In the present study, a sonochemical method was used to synthesis novel zinc molybdate nanopowders with different precursors. The synthesis of the nanostructures was performed using sodium zinc molybdate and different salts of zinc such as zinc nitrate, zinc acetate, and zinc sulfate, as a precursor. Also, the effect of instrumental factors containing sonication power and time irradiation was optimized by the sonochemical method for synthesis of the nanostructures. The characterization of the products was accomplished by various techniques containing field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). The results showed zinc nitrate precursor can be produce homogeneous nanostructures in optimized conditions. Therefore, the nano-structured zinc molybdate compound was applied for modification of a carbon paste electrode (CPE). The oxidation reaction of ethanol was selected for investigation of the electrocatalytic performance of the nano-structured modified electrode. Cyclic voltammetry (CV) and chronoamperometry were applied for the electrochemical characterization as well as stability and repeatability studies. The nano-structured modified electrode showed an improved catalytic performance for the oxidation of ethanol than the CPE. Therefore, the nanostructures can show potential applications or directions for future work. The potential applications of the modified electrode in fuel cells, sensors, and energy storage fields can be considered and also suggest areas for further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Yerba mate tea mediated synthesis of nanoscale zero valent iron particles and their application in detection of Pb ions in water Cost-effective Amperometric Immunosensor for cardiac troponin I as a step towards affordable point-of-care diagnosis of acute myocardial infarction Application of novel oligomeric Co(II) complexes of 4,4′-bipyridine and 1,10-phenanthroline modified glassy carbon electrode for differential pulse voltammetric determination of ciprofloxacin A label-free gold nanoparticles functionalized peptide dendrimer biosensor for visual detection of breakthrough infections in COVID-19 vaccinated patients Simplified optical monitoring systems for detecting leukocyte-derived hypochlorite ions using small amounts of whole blood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1