Weighted-digraph-guided multi-kernelized learning for outlier explanation

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-02-17 DOI:10.1016/j.inffus.2025.103026
Lili Guan , Lei Duan , Xinye Wang , Haiying Wang , Rui Lin
{"title":"Weighted-digraph-guided multi-kernelized learning for outlier explanation","authors":"Lili Guan ,&nbsp;Lei Duan ,&nbsp;Xinye Wang ,&nbsp;Haiying Wang ,&nbsp;Rui Lin","doi":"10.1016/j.inffus.2025.103026","DOIUrl":null,"url":null,"abstract":"<div><div>Outlier explanation methods based on outlying subspace mining have been widely used in various applications due to their effectiveness and explainability. These existing methods aim to find an outlying subspace of the original space (a set of features) that can clearly distinguish a query outlier from all inliers. However, when the query outlier in the original space are linearly inseparable from inliers, these existing methods may not be able to accurately identify an outlying subspace that effectively distinguishes the query outlier from all inliers. Moreover, these methods ignore differences between the query outlier and other outliers. In this paper, we propose a novel method named WANDER (<strong>W</strong>ighted-digr<strong>A</strong>ph-Guided Multi-Ker<strong>N</strong>elize<strong>D</strong> l<strong>E</strong>a<strong>R</strong>ning) for outlier explanation, aiming to learn an optimal outlying subspace that can separate the query outlier from other outliers and the inliers simultaneously. Specifically, we first design a quadruplet sampling module to transform the original dataset into a set of quadruplets to mitigate extreme data imbalances and to help the explainer better capture the differences among the query outlier, other outliers, and inliers. Then we design a weighted digraph generation module to capture the geometric structure in each quadruplet within the original space. In order to consider the condition that quadruplets are linearly inseparable in the original space, we further construct a feature embedding module to map the set of quadruplets from the original space to a kernelized embedding space. To find the optimal kernelized embedding space, we design an outlying measure module to iteratively update the parameters in the feature embedding module by the weighted-digraph-based quadruplet loss. Finally, WANDER outputs an outlying subspace used to interpret the query outlier through an outlying subspace extraction module. Extensive experiments show that WANDER outperforms state-of-the-art methods, achieving improvements in AUPRC, AUROC, Jaccard Index, and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> scores of up to 25.3%, 16.5%, 37.4%, and 28.4%, respectively, across seven real-world datasets. Our datasets and source code are publicly available at <span><span>https://github.com/KDDElab/WANDER1</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"119 ","pages":"Article 103026"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525000995","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Outlier explanation methods based on outlying subspace mining have been widely used in various applications due to their effectiveness and explainability. These existing methods aim to find an outlying subspace of the original space (a set of features) that can clearly distinguish a query outlier from all inliers. However, when the query outlier in the original space are linearly inseparable from inliers, these existing methods may not be able to accurately identify an outlying subspace that effectively distinguishes the query outlier from all inliers. Moreover, these methods ignore differences between the query outlier and other outliers. In this paper, we propose a novel method named WANDER (Wighted-digrAph-Guided Multi-KerNelizeD lEaRning) for outlier explanation, aiming to learn an optimal outlying subspace that can separate the query outlier from other outliers and the inliers simultaneously. Specifically, we first design a quadruplet sampling module to transform the original dataset into a set of quadruplets to mitigate extreme data imbalances and to help the explainer better capture the differences among the query outlier, other outliers, and inliers. Then we design a weighted digraph generation module to capture the geometric structure in each quadruplet within the original space. In order to consider the condition that quadruplets are linearly inseparable in the original space, we further construct a feature embedding module to map the set of quadruplets from the original space to a kernelized embedding space. To find the optimal kernelized embedding space, we design an outlying measure module to iteratively update the parameters in the feature embedding module by the weighted-digraph-based quadruplet loss. Finally, WANDER outputs an outlying subspace used to interpret the query outlier through an outlying subspace extraction module. Extensive experiments show that WANDER outperforms state-of-the-art methods, achieving improvements in AUPRC, AUROC, Jaccard Index, and F1 scores of up to 25.3%, 16.5%, 37.4%, and 28.4%, respectively, across seven real-world datasets. Our datasets and source code are publicly available at https://github.com/KDDElab/WANDER1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Enhancing cross-domain generalization by fusing language-guided feature remapping From patches to WSIs: A systematic review of deep Multiple Instance Learning in computational pathology Weighted-digraph-guided multi-kernelized learning for outlier explanation STA-Net: Spatial–temporal alignment network for hybrid EEG-fNIRS decoding CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1