Marwa El-Sheikh , Ahmed Atef Mesalam , Ahmed F. El-Sayed , Ayman Mesalam , Heba M. Metwally , Seo-Hyun Lee , Il-Keun Kong
{"title":"Nicotinamide dual treatment enhances morula-to-blastocyst transition through binding to Zonula Occludens-1 protein","authors":"Marwa El-Sheikh , Ahmed Atef Mesalam , Ahmed F. El-Sayed , Ayman Mesalam , Heba M. Metwally , Seo-Hyun Lee , Il-Keun Kong","doi":"10.1016/j.theriogenology.2025.02.022","DOIUrl":null,"url":null,"abstract":"<div><div>Nicotinamide (NAM) is a widely utilized compound in cell culture systems, yet its role during the morula-to-blastocyst transition remains underexplored. This study investigates the effects of NAM supplementation during both <em>in vitro</em> maturation (IVM) of oocytes and late-stage embryo culture (IVC3; the morula stage) on blastocyst development, metabolic flux, mitochondrial bioenergetics, and pluripotency of cells. Bovine oocytes were subjected to dual NAM treatment during IVM and IVC3 and its impact was assessed through cleavage and blastocyst development rates, mitochondrial membrane potential (ΔΨm), and the expression of key metabolic and pluripotency markers using RT-qPCR and immunofluorescence. Additionally, molecular docking was performed to evaluate NAM's interaction with Zonula Occludens-1 (ZO-1) protein. Dual NAM administration significantly increased both blastocyst formation and hatching rates. Computational modeling revealed a strong binding affinity (−6.44 kcal/mol) between NAM and the ZO-1 protein, associated with the morula-to-blastocyst transition. Quantitative RT-PCR analysis showed upregulation of genes related to NAD + biosynthesis (<em>NAMPT</em>, <em>MDH1</em>), glycolysis (<em>PFK1</em>), glycogenesis (<em>GSK-3A</em>), and mitochondrial bioenergetics (<em>SDHA</em>, <em>ND2</em>, <em>ATPase8</em>, <em>TFAM</em>) in NAM-treated group. Additionally, mitochondrial profiling demonstrated enhanced polarization, and OCT4 expression was elevated in NAM-treated embryos. These findings underscore NAM's potential role in enhancing morula-to-blastocyst transition, improving embryonic development through metabolic and mitochondrial regulation, as well as pluripotency factor enhancement.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"237 ","pages":"Pages 110-119"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X25000743","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotinamide (NAM) is a widely utilized compound in cell culture systems, yet its role during the morula-to-blastocyst transition remains underexplored. This study investigates the effects of NAM supplementation during both in vitro maturation (IVM) of oocytes and late-stage embryo culture (IVC3; the morula stage) on blastocyst development, metabolic flux, mitochondrial bioenergetics, and pluripotency of cells. Bovine oocytes were subjected to dual NAM treatment during IVM and IVC3 and its impact was assessed through cleavage and blastocyst development rates, mitochondrial membrane potential (ΔΨm), and the expression of key metabolic and pluripotency markers using RT-qPCR and immunofluorescence. Additionally, molecular docking was performed to evaluate NAM's interaction with Zonula Occludens-1 (ZO-1) protein. Dual NAM administration significantly increased both blastocyst formation and hatching rates. Computational modeling revealed a strong binding affinity (−6.44 kcal/mol) between NAM and the ZO-1 protein, associated with the morula-to-blastocyst transition. Quantitative RT-PCR analysis showed upregulation of genes related to NAD + biosynthesis (NAMPT, MDH1), glycolysis (PFK1), glycogenesis (GSK-3A), and mitochondrial bioenergetics (SDHA, ND2, ATPase8, TFAM) in NAM-treated group. Additionally, mitochondrial profiling demonstrated enhanced polarization, and OCT4 expression was elevated in NAM-treated embryos. These findings underscore NAM's potential role in enhancing morula-to-blastocyst transition, improving embryonic development through metabolic and mitochondrial regulation, as well as pluripotency factor enhancement.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.