Greedy-assisted teaching-learning-based optimization algorithm for cost-based hybrid flow shop scheduling

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2025-02-19 DOI:10.1016/j.eswa.2025.126955
Wasif Ullah , Mohd Fadzil Faisae Ab Rashid , Muhammad Ammar Nik Mu’tasim
{"title":"Greedy-assisted teaching-learning-based optimization algorithm for cost-based hybrid flow shop scheduling","authors":"Wasif Ullah ,&nbsp;Mohd Fadzil Faisae Ab Rashid ,&nbsp;Muhammad Ammar Nik Mu’tasim","doi":"10.1016/j.eswa.2025.126955","DOIUrl":null,"url":null,"abstract":"<div><div>Production scheduling is a strategic process that organizes the execution of jobs on available resources to optimize specific objectives. One significant scheduling challenge is the Cost-based Hybrid Flow Shop (CHFS) problem, which involves optimizing job scheduling across multiple stages to minimize scheduling-related costs. However, limited attention has been given to CHFS when considering holistic cost models using efficient algorithms. This paper presents a novel Greedy-Assisted Teaching-Learning-Based Optimization (GTLBO) algorithm for CHFS. Unlike previous studies that focus on isolated cost factors, this research formulated an integrated mathematical model for CHF holistically capturing labor, energy consumption, maintenance, and late penalty costs. The GTLBO algorithm incorporates a unique hybrid initialization strategy, generating 10 % of the initial population using a Greedy algorithm to enhance exploration efficiency. The performance of GTLBO was evaluated through computational experiments involving 12 test instances, with comparative algorithms included for analysis. Results from the Wilcoxon rank-sum test indicated a significant difference between the outputs of GTLBO and other algorithms, with GTLBO outperforming the comparative algorithms in 75 % of the test instances. Additionally, the case study validation showed that GTLBO can reduce costs by 0.23 % to 4.31 % compared to other algorithms. This research offers valuable insights for manufacturers seeking to optimize CHFS scheduling to reduce production expenses.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"273 ","pages":"Article 126955"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425005779","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Production scheduling is a strategic process that organizes the execution of jobs on available resources to optimize specific objectives. One significant scheduling challenge is the Cost-based Hybrid Flow Shop (CHFS) problem, which involves optimizing job scheduling across multiple stages to minimize scheduling-related costs. However, limited attention has been given to CHFS when considering holistic cost models using efficient algorithms. This paper presents a novel Greedy-Assisted Teaching-Learning-Based Optimization (GTLBO) algorithm for CHFS. Unlike previous studies that focus on isolated cost factors, this research formulated an integrated mathematical model for CHF holistically capturing labor, energy consumption, maintenance, and late penalty costs. The GTLBO algorithm incorporates a unique hybrid initialization strategy, generating 10 % of the initial population using a Greedy algorithm to enhance exploration efficiency. The performance of GTLBO was evaluated through computational experiments involving 12 test instances, with comparative algorithms included for analysis. Results from the Wilcoxon rank-sum test indicated a significant difference between the outputs of GTLBO and other algorithms, with GTLBO outperforming the comparative algorithms in 75 % of the test instances. Additionally, the case study validation showed that GTLBO can reduce costs by 0.23 % to 4.31 % compared to other algorithms. This research offers valuable insights for manufacturers seeking to optimize CHFS scheduling to reduce production expenses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Advanced deep learning model for crop-specific and cross-crop pest identification MSIFT: A novel end-to-end mechanical fault diagnosis framework under limited & imbalanced data using multi-source information fusion Exploring multi-scale and cross-type features in 3D point cloud learning with CCMNET Research on improving the robustness of spatially embedded interdependent networks by adding local additional dependency links Referring flexible image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1