Using machine learning to estimate the heterogeneous impact of Airbnb on house prices: Evidence from Corsica

IF 2.4 3区 经济学 Q3 ECONOMICS Journal of Housing Economics Pub Date : 2025-02-17 DOI:10.1016/j.jhe.2025.102044
Daniel Brunstein , Georges Casamatta , Sauveur Giannoni
{"title":"Using machine learning to estimate the heterogeneous impact of Airbnb on house prices: Evidence from Corsica","authors":"Daniel Brunstein ,&nbsp;Georges Casamatta ,&nbsp;Sauveur Giannoni","doi":"10.1016/j.jhe.2025.102044","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of Airbnb on property prices in Corsica. Leveraging machine learning techniques, we obtain more robust results than those achieved with conventional methods and uncover heterogeneous effects of Airbnb on property values. Our analysis reveals that a 1% increase in Airbnb listings leads to an average 0.21% rise in house prices. Interestingly, this effect is more pronounced in economically less developed regions, such as inland municipalities and remote seaside resorts, compared to traditionally popular tourist destinations and urban areas.</div></div>","PeriodicalId":51490,"journal":{"name":"Journal of Housing Economics","volume":"67 ","pages":"Article 102044"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Housing Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051137725000038","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the influence of Airbnb on property prices in Corsica. Leveraging machine learning techniques, we obtain more robust results than those achieved with conventional methods and uncover heterogeneous effects of Airbnb on property values. Our analysis reveals that a 1% increase in Airbnb listings leads to an average 0.21% rise in house prices. Interestingly, this effect is more pronounced in economically less developed regions, such as inland municipalities and remote seaside resorts, compared to traditionally popular tourist destinations and urban areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习估计Airbnb对房价的异质影响:来自科西嘉岛的证据
本研究调查了Airbnb对科西嘉岛房地产价格的影响。利用机器学习技术,我们获得了比传统方法更可靠的结果,并揭示了Airbnb对房地产价值的异质影响。我们的分析显示,Airbnb房源每增加1%,房价就会平均上涨0.21%。有趣的是,与传统的热门旅游目的地和城市地区相比,这种影响在经济欠发达地区更为明显,如内陆城市和偏远的海滨度假胜地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
4.20%
发文量
35
期刊介绍: The Journal of Housing Economics provides a focal point for the publication of economic research related to housing and encourages papers that bring to bear careful analytical technique on important housing-related questions. The journal covers the broad spectrum of topics and approaches that constitute housing economics, including analysis of important public policy issues.
期刊最新文献
Energy price shock and housing market dynamics: Evidence from Germany Housing policy, homeownership, and inequality Coastal hazards and bigger rebuilds: Spatial drivers of housing redevelopment The effects of U.S. low-income housing programs on recipient consumption and wellbeing Linking housing Tobin’s Q to zoning, regulation and land prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1