A Genetic Algorithm based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM) for Predicting Electric Vehicles energy consumption
Boutheina Jlifi , Syrine Ferjani , Claude Duvallet
{"title":"A Genetic Algorithm based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM) for Predicting Electric Vehicles energy consumption","authors":"Boutheina Jlifi , Syrine Ferjani , Claude Duvallet","doi":"10.1016/j.compeleceng.2025.110185","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome Climate Change, countries are turning to greener transportation systems. Therefore, the use of Electric Vehicles (EVs) is leveraging substantially since they present multiple advantages, like reducing hazardous emissions. Recently, the demand for EVs has increased, which means that more charging stations need to be available. By the year 2030, 15 million EVs will be accessible, and since the number of charging stations is limited, the charging needs should be defined for better management of the charging infrastructure. In this research, we aim to tackle this problem by efficiently predicting the energy consumption of EVs. We proposed a Genetic Algorithm (GA) based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM), which is an optimized LSTM model that incorporates a GA for Hyperparameter Tuning. After experimenting our methodology and performing a comparative analysis with previous studies from the literature, the obtained results showed the efficiency of our novel model, with Mean Squared Error (MSE) equals to 0.000112 and a Determination Coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) equals to 0.96470. It outperformed other models of the literature for predicting energy use based on real-world data collected from the campus of Georgia Tech in Atlanta, USA.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110185"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625001284","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome Climate Change, countries are turning to greener transportation systems. Therefore, the use of Electric Vehicles (EVs) is leveraging substantially since they present multiple advantages, like reducing hazardous emissions. Recently, the demand for EVs has increased, which means that more charging stations need to be available. By the year 2030, 15 million EVs will be accessible, and since the number of charging stations is limited, the charging needs should be defined for better management of the charging infrastructure. In this research, we aim to tackle this problem by efficiently predicting the energy consumption of EVs. We proposed a Genetic Algorithm (GA) based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM), which is an optimized LSTM model that incorporates a GA for Hyperparameter Tuning. After experimenting our methodology and performing a comparative analysis with previous studies from the literature, the obtained results showed the efficiency of our novel model, with Mean Squared Error (MSE) equals to 0.000112 and a Determination Coefficient (R) equals to 0.96470. It outperformed other models of the literature for predicting energy use based on real-world data collected from the campus of Georgia Tech in Atlanta, USA.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.