A Genetic Algorithm based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM) for Predicting Electric Vehicles energy consumption

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2025-02-21 DOI:10.1016/j.compeleceng.2025.110185
Boutheina Jlifi , Syrine Ferjani , Claude Duvallet
{"title":"A Genetic Algorithm based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM) for Predicting Electric Vehicles energy consumption","authors":"Boutheina Jlifi ,&nbsp;Syrine Ferjani ,&nbsp;Claude Duvallet","doi":"10.1016/j.compeleceng.2025.110185","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome Climate Change, countries are turning to greener transportation systems. Therefore, the use of Electric Vehicles (EVs) is leveraging substantially since they present multiple advantages, like reducing hazardous emissions. Recently, the demand for EVs has increased, which means that more charging stations need to be available. By the year 2030, 15 million EVs will be accessible, and since the number of charging stations is limited, the charging needs should be defined for better management of the charging infrastructure. In this research, we aim to tackle this problem by efficiently predicting the energy consumption of EVs. We proposed a Genetic Algorithm (GA) based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM), which is an optimized LSTM model that incorporates a GA for Hyperparameter Tuning. After experimenting our methodology and performing a comparative analysis with previous studies from the literature, the obtained results showed the efficiency of our novel model, with Mean Squared Error (MSE) equals to 0.000112 and a Determination Coefficient (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) equals to 0.96470. It outperformed other models of the literature for predicting energy use based on real-world data collected from the campus of Georgia Tech in Atlanta, USA.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110185"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625001284","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome Climate Change, countries are turning to greener transportation systems. Therefore, the use of Electric Vehicles (EVs) is leveraging substantially since they present multiple advantages, like reducing hazardous emissions. Recently, the demand for EVs has increased, which means that more charging stations need to be available. By the year 2030, 15 million EVs will be accessible, and since the number of charging stations is limited, the charging needs should be defined for better management of the charging infrastructure. In this research, we aim to tackle this problem by efficiently predicting the energy consumption of EVs. We proposed a Genetic Algorithm (GA) based Three HyperParameter optimization of Deep Long Short Term Memory (GA3P-DLSTM), which is an optimized LSTM model that incorporates a GA for Hyperparameter Tuning. After experimenting our methodology and performing a comparative analysis with previous studies from the literature, the obtained results showed the efficiency of our novel model, with Mean Squared Error (MSE) equals to 0.000112 and a Determination Coefficient (R2) equals to 0.96470. It outperformed other models of the literature for predicting energy use based on real-world data collected from the campus of Georgia Tech in Atlanta, USA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Underwater image restoration via multiscale optical attenuation compensation and adaptive dark channel dehazing Deep learning based medical image segmentation for encryption with copyright protection through data hiding A PUF-based lightweight identity authentication protocol for Internet of Vehicles Hybrid-Network based Dynamic Wireless Power Transfer With Reduced Power Pulsation Complex chromatic imaging for enhanced radar face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1