Construction of hard carbon with abundant closed ultra-micropores via a pre-oxidation strategy for high-efficiency sodium storage in the low potential plateau

IF 14.9 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2025-02-11 DOI:10.1016/j.jechem.2025.01.042
Wenbo Hou , Lili Ma , Zhiyuan Liu , Yiming Hu , Wenxing Miao , Bo Tao , Kanjun Sun , Hui Peng , Guofu Ma
{"title":"Construction of hard carbon with abundant closed ultra-micropores via a pre-oxidation strategy for high-efficiency sodium storage in the low potential plateau","authors":"Wenbo Hou ,&nbsp;Lili Ma ,&nbsp;Zhiyuan Liu ,&nbsp;Yiming Hu ,&nbsp;Wenxing Miao ,&nbsp;Bo Tao ,&nbsp;Kanjun Sun ,&nbsp;Hui Peng ,&nbsp;Guofu Ma","doi":"10.1016/j.jechem.2025.01.042","DOIUrl":null,"url":null,"abstract":"<div><div>Rationally regulating the porosity of hard carbon (HC), especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na<sup>+</sup> embedding, has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency (ICE). However, the preparation of such HC materials with specific pore structures still faces great challenges. Herein, a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material, achieving a significant improvement in its ICE and platform capacity. The pre-oxidation process promotes the cross-linking degree of the soy protein, thereby hindering the directional growth of graphite domains during the carbonization process. The optimized HC exhibits ultra-high platform capacity (329 mAh g<sup>−1</sup>) and considerable energy density (148.5 Wh kg<sup>−1</sup>). Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results, the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling. The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micropores.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"105 ","pages":"Pages 65-75"},"PeriodicalIF":14.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625000956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Rationally regulating the porosity of hard carbon (HC), especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+ embedding, has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency (ICE). However, the preparation of such HC materials with specific pore structures still faces great challenges. Herein, a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material, achieving a significant improvement in its ICE and platform capacity. The pre-oxidation process promotes the cross-linking degree of the soy protein, thereby hindering the directional growth of graphite domains during the carbonization process. The optimized HC exhibits ultra-high platform capacity (329 mAh g−1) and considerable energy density (148.5 Wh kg−1). Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results, the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling. The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micropores.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过预氧化策略在低电位高原构建具有丰富封闭超微孔的硬碳,实现高效钠储存
合理调节硬碳(HC)的孔隙率,特别是与低电位平台相匹配的封闭孔隙和适合Na+包埋的超微孔结构,是提高储钠性能和初始库仑效率(ICE)的关键。然而,这种具有特定孔隙结构的HC材料的制备仍然面临着很大的挑战。本文采用简单的预氧化策略,在大豆蛋白粉衍生的HC材料中构建了丰富的封闭超微孔结构,显著提高了其ICE和平台容量。预氧化过程提高了大豆蛋白的交联度,从而阻碍了炭化过程中石墨畴的定向生长。优化后的HC具有超高的平台容量(329 mAh g−1)和可观的能量密度(148.5 Wh kg−1)。基于非原位拉曼和x射线光电子能谱表征结果,HC材料优异的储钠能力归因于吸附-插层/填充的协同效应。所提出的工作为合成其他具有丰富封闭超微孔的生物质来源的HC材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Electrode heterogeneous modeling and cross-scale analysis under multi-physics coupling: Microstructure-dependent mechanism for nonlinear degradation Sustainable biopolymer hydrogel electrolytes for electrochromics: Materials, mechanisms, and roadmaps to next-generation smart technologies Layer-dependent ammonia activation on VOx/Cu inverse catalysts Coupled reaction pathways and microenvironment engineering in IrOx/Nb2O5 for efficient water electrolysis Homogenizing bandgap distribution of Sb2(S,Se)3 absorber boosting the efficiency of solar cells to 10.83%
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1